Notes and references
1 H. M. R. Hoffmann and J. Rabe, Angew. Chem., 1985, 97, 96.
2 S. M. Kupchan, M. A. Eakin and A. M. Thomas, J. Med. Chem.,
1971, 14, 1147.
3 K. H. Lee and H. Furukawa, J. Med. Chem., 1972, 15, 609.
4 M. J. Rieser, J. F. Kozlowski, K. V. Wood and J. L. McLaughlin,
Tetrahedron Lett., 1991, 32, 1137.
5 S. Behr, K. Hegemann, H. Schimanski, R. Frohlich and G. Haufe,
Eur. J. Org. Chem., 2004, 18, 3884.
6 K. Hegemann, R. Frohlich and G. Haufe, Eur. J. Org. Chem., 2004,
10, 2181.
7 R. Gao, W. Dai, Y. Le, X. Yang, Y. Cao, H. Li and K. Fan, Green
Chem., 2007, 9, 878.
8 R Gao, W. Dai, X. Yang, H. Li and K. Fan, Appl. Catal., A, 2007,
332, 138.
Fig. 10 The conversion of COD with time over the 16%HPW-NH2-
MCF and the filtration (a, with catalyst; b, without catalyst).
9 M. T. Pope, Heteropoly and Isopoly Oxometalates, Springer-Verlag,
New York, 1983.
10 J. F. Keggin, Nature, 1933, 131, 908.
the 16%HPW-NH2-MCF catalyst is actually a heterogeneous
one. It is also interesting to find that the addition of new
COD to the solution which has been left stirring for normal
12 h after which the heterogeneous catalyst was removed, the
conversion of COD for another 12 h was zero. In view of
the excellent activity, selectivity and stability of the HPW-
NH2-MCF material in the selective oxidation of COD with
aqueous H2O2, further studies on the utilization of this ma-
terial in other organic oxidations including epoxidation and
oxidative cleavage of C C bonds with aqueous H2O2 are under
way.
11 I. V. Kozhevnikov, Catal. Rev., 1995, 37, 311.
12 C. L. Hill and C. M. Prosser-McCartha, Coord. Chem. Rev., 1995,
143, 407.
13 T. Okuhara, N. Mizuno and M. Misono, Adv. Catal., 1996, 41, 113.
14 I. K. Song, S. H. Moon and W. Y. Lee, Korean J. Chem. Eng., 1991,
8, 33.
15 I. K. Song and M. A. Barteau, Korean J. Chem. Eng., 2002, 19, 567.
16 I. K. Song, M. S. Kaba and M. A. Barteau, Langmuir, 2002, 18,
2358.
17 W. Chu, X. Yang, Y. Shan, X. Ye and Y. Wu, Catal. Lett., 1996, 42,
201.
18 N. Y. He, C. S. Woo, H. G. Kim and H. I. Lee, Appl. Catal., A, 2005,
281, 167.
19 K. Nowinska, R. Formaniak and W. A. Waclaw, Appl. Catal., A,
2003, 256, 115.
20 P. Kim, H. Kim, J. Yi and I. K. Song, Stud. Surf. Sci. Catal., 2006,
159, 265.
4. Conclusion
21 K. Nomiya, H. Murasaki and M. Miwa, Polyhedron, 1986, 5, 1031.
22 M. Hasik, W. Turek, E. Stochmal, M. Łapkowski and A. Pron, J.
Catal., 1994, 147, 544.
23 H. Kim, J. C. Jung, S. H. Yeom, K. Y. Lee and I. K. Song, J. Mol.
Catal. A: Chem., 2006, 248, 21.
24 H. Kim, P. Kim, K. Y. Lee, S. H. Yeom, J. Yi and I. K. Song, Catal.
Today, 2006, 111, 361.
25 P. Schmidt-Winkel, W. W. Lukens, Jr., P. Yang, D. I. Margolese, J. S.
Lettow, J. Y. Ying and G. D. Stucky, Chem. Mater., 2000, 12, 686.
26 D. Y. Zhao, J. L. Feng, Q. S. Huo, N. Melosh, G. H. Fredrickson, B.
F. Chmelka and G. D. Stucky, Science, 1998, 279, 548.
27 D. Y. Zhao, Q. S. Huo, J. L. Feng, B. F. Chmelka and G. D. Stucky,
J. Am. Chem. Soc., 1998, 120, 6024.
28 J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge,
K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B.
McCullen, J. B. Higgins and J. L. Schlenker, J. Am. Chem. Soc.,
1992, 114, 10834.
In summary, the heteropoly phosphotungstic acid, H3PW12O40,
has been successfully immobilized on the surface of meso-
porous MCF, SBA-15 and MCM-41 by means of chemical
bonding to aminosilane groups. Characterization results from
N2 sorption indicate that the surface area decreased after
grafting organic amine to silica. The aminopropyl functional
groups were successfully grafted on the MCF silica from 13C
and 29Si MAS NMR results. The strong interaction between
the NH2 groups in the silane moieties and HPW molecules is
shown by FT-IR, XPS and 31P MAS-NMR. The HPW-NH2-
MCF is highly efficient in the O-heterocyclization of COD to
2,6-dihydroxy-9-oxabicyclo[3.3.1]nonane (1) and 2-hydroxy-9-
oxabicyclo[3.3.1]nonane-6-one (2) with a COD conversion up
to 100% and (1 + 2) selectivity up to 98%. The HPW-NH2-MCF
could be used for more than six times without any significant
loss of activity and leaching of tungsten species in the reaction
mixture. The good stability can be attributed to the strong
interaction between the NH2 groups in the silane moieties and
HPW molecules.
29 P. Schmidt-Winkel, W. W. Lukens Jr., D. Zhao, P. Yang, B. F. Chmelka
and G. D. Stucky, J. Am. Chem. Soc., 1999, 121, 254.
30 A. S. M. Chong and X. S. Zhao, J. Phys. Chem. B, 2003, 107, 12650.
31 F. Juan and E. Ruiz-Hitzky, Adv. Mater., 2000, 12, 430; A. M. Liu,
K. Hidajat, S. Kawi and D. Y. Zhao, Chem. Commun., 2000, 1145.
32 H. H. P. Yiu, P. A. Wright and N. P. Botting, J. Mol. Catal. B: Enzym.,
2001, 15, 81.
33 N. Liu, R. A. Assink, B. Smarsly and C. J. Brinker, Chem. Commun.,
2003, 1146.
34 X. Wang, K. S. K. Lin, J. C. C. Chan and S. Cheng, J. Phys. Chem.
B, 2005, 109, 1763.
Acknowledgements
35 C. J. Dillon, J. H. Holles, R. J. Davis, J. A. Labinger and M. E. Davis,
J. Catal., 2003, 218, 54.
36 S. Uchida, K. Inumaru and M. Misono, J. Phys. Chem. B, 2000, 104,
8108.
We thank the Major State Basic Resource Development Pro-
gram (Grant No. 2003CB 615807), NNSFC (Project 20973042),
the Research Fund for the Doctoral Program of Higher
Education (20090071110011) and the Science & Technology
Commission of Shanghai Municipality (08DZ2270500) for
financial support.
37 S. Damyanova, J. L. G. Fierro, I. Sobrados and J. Sanz, Langmuir,
1999, 15, 469.
38 H. L. Li, N. Perkas, Q. L. Li, Y. Gofer, Y. Koltypin and A. Gedanken,
Langmuir, 2003, 19, 10409.
708 | Green Chem., 2011, 13, 702–708
This journal is
The Royal Society of Chemistry 2011
©