E. Kebede, R. Tadikonda, M. Nakka, B. Inkollu, S. Vidavalur
SHORT COMMUNICATION
Scheme 2. Plausible mechanism.
[3] W. A. Denny, G. W. Rewcastle, B. C. Baguley, J. Med. Chem.
1990, 33, 817–823.
Conclusions
[4] L. Hu, M. L. Kully, D. W. Boykin, N. Abood, Bioorg. Med.
Chem. Lett. 2009, 19, 3374–3377.
[5] A. W. White, R. Almassy, A. H. Calvert, N. J. Curtin, R. J.
Griffin, Z. Hostomsky, K. Maegley, D. R. Newell, S. Sriniva-
san, B. T. Golding, J. Med. Chem. 2000, 43, 4084–4097.
[6] J. Min, J. Won, Y. S. Kang, S. Nagase, J. Photochem. Photobiol.
A: Chem. 2011, 219, 148–153.
[7] a) J. Zhao, B. Sun, L. Qiu, H. Caocen, Q. Li, X. Chen, F. Yan,
J. Mater. Chem. 2012, 22, 18380–18386; b) P. Saluja, H.
Sharma, N. Kaur, N. Singh, D. O. Jang, Tetrahedron 2012, 68,
2289–2293.
In conclusion, we developed an efficient and CO-gas-free
approach to the synthesis of benzimidazoles and benzox-
azoles through the Mo(CO)6-mediated carbonylation of
aryl halides. In this transformation, Mo(CO)6 was used as
a solid source of carbon monoxide. Owing to the availabil-
ity of the starting materials and the potential applications
of the products, this method has many prospects in organic
synthesis and medicinal chemistry.
[8] a) V. S. Padalkar, A. Tathe, V. D. Gupta, V. S. Patil, K. Phatan-
gare, N. Sekar, J. Fluoresc. 2012, 22, 311–322.
[9] W. Cui, R. B. Kargbo, Z. Sajjadi-Hashemi, F. Ahmed, J. F.
Gauuan, Synlett 2012, 247–250.
[10] a) K. Bahrami, M. M. Khodaei, F. Naali, J. Org. Chem. 2008,
73, 6835–6837; b) S. V. Ryabukhin, A. S. Plaskon, D. M. Vol-
ochnyuk, A. A. Tolmachev, Synthesis 2006, 3715–3726; c) L.-
H. Du, Y. G. Wang, Synthesis 2007, 675–678; d) P. L. Beaulieu,
B. Haché, E. Von Moos, Synthesis 2003, 1683–1692.
[11] T. B. Nguyen, L. Ermolenko, W. A. Dean, A. Al-Mourabit,
Org. Lett. 2012, 14, 5948–5951.
[12] D. Xue, Y.-Q. Long, J. Org. Chem. 2014, 79, 4727–4734.
[13] G. Naresh, R. Kant, T. Narender, J. Org. Chem. 2014, 79,
3821–3829–3829.
Experimental Section
General Procedure:
A mixture of 2-amino/hydroxyaniline (1,
1.0 equiv.), aryl halide 2 (1.2 equiv.), Mo(CO)6 (0.2 equiv.), Et4NCl
(0.2 equiv.), and Bu3N (1.1 equiv.) in DMF (10 mL) was heated at
150 °C under a N2 atmosphere. After completion of the reaction
as monitored by TLC, the mixture was cooled to room temperature
and partitioned between water and ethyl acetate. The organic and
aqueous layers were then separated, and the aqueous layer was ex-
tracted with ethyl acetate (2ϫ). The combined organic layer was
dried with anhydrous Na2SO4, and the solvent was evaporated un-
der reduced pressure to afford the crude product. The crude mate-
rial was purified by silica gel (100–200 mesh) column chromatog-
raphy (EtOAc/hexane) to afford product 3.
[14] L. Cai, X. Ji, Z. Yao, F. Xu, Q. Shen, Chin. J. Chem. 2011, 29,
1880–1886.
[15] S. Kamila, B. Koh, E. R. Biehl, J. Heterocycl. Chem. 2006, 43,
1609–1612.
[16] M. S. Mayo, X. Yu, X. Zhou, X. Feng, Y. Yamamoto, M. Bao,
Org. Lett. 2014, 16, 764–767.
Supporting Information (see footnote on the first page of this arti-
cle): Experimental procedures, product characterization data, and
1
copies of selected H and 13C NMR spectra.
[17] For recent reviews, see: a) Y. Wan, M. Alterman, M. Larhed,
A. Hallberg, J. Org. Chem. 2002, 67, 6232–6235; b) L. R. Odell,
F. Russo, M. Larhed, Synlett 2012, 685–698; c) M. Beller, B.
Cornils, C. D. Frohning, C. W. Kohlpaintner, J. Mol. Catal. A
1995, 104, 17–85; d) A. Brennfuhrer, H. Neumann, M. Beller,
Angew. Chem. Int. Ed. 2009, 48, 4114–4133; Angew. Chem.
2009, 121, 4176–4196; e) R. Grigg, S. P. Mutton, Tetrahedron
2010, 66, 5515–5548; f) X. F. Wu, H. Neumann, M. Beller,
Chem. Soc. Rev. 2011, 40, 4986–5009; g) X. F. Wu, H. Neu-
mann, M. Beller, Chem. Rev. 2013, 113, 1–35; h) B. Gabriele,
R. Mancuso, G. Salerno, Eur. J. Org. Chem. 2012, 6825–6839.
[18] W. Ren, M. Yamane, J. Org. Chem. 2009, 74, 8332–8335.
[19] a) W. Ren, M. Yamane, J. Org. Chem. 2010, 75, 8410–8415; b)
W. Ren, M. Yamane, J. Org. Chem. 2010, 75, 3017–3020; c) K.
Penta Rao, A. K. Basak, R. Amancha, V. S. Patil, L. Krishnak-
anth Reddy, Tetrahedron Lett. 2013, 54, 5510–5513; d) B. Rob-
erts, D. Liptrot, L. Alcaraz, T. Luker, M. J. Stocks, Org. Lett.
Acknowledgments
The authors thank the Department of Atomic Energy (DAE),
Board of Research in Nuclear Sciences (BRNS), Mumbai for finan-
cial support through project 37(2)/14/02/2014-BRNS, the Ministry
of Education, Ethiopia for financial support to E. K. G., and the
University Grants Commission (UGC), New Delhi, for the award
of SRF to the authors T. R. and N. M.
[1] M. L. McKee, S. M. Kerwin, Bioorg. Med. Chem. 2008, 16,
1775–1783.
[2] R. A. Elrayess, N. Ghareb, M. M. Azab, M. M. Said, J. Life
Sci. 2013, 10, 1784–1793.
5932
www.eurjoc.org
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2015, 5929–5933