PNl ee aws eJ do ou rnn oa tl ao df j uC sht emm ai rs gt ir ny s
Page 6 of 8
ARTICLE
Journal Name
of catalytic activity. However, gradual decline in the catalytic
Jiang, Z. Tao, M. Ji, Q. Zhao, X. Fu and H. Yin, Catal. Commun., 2012,
th
28, 47-51.
activity of GO-TiO
2
was noted after 6 cycle.
DOI: 10.1039/C5NJ03380B
4
5
6
7
2
(a) S. Kumari, A. Shekhar and D. D. Pathak, RSC Adv., 2014, 4,
6
1
5344; (e) X. Li, B. Weng, N. Zhang and Y. J. Xu, RSC Adv., 2014,
4
Energy Environ. Sci., 2012, 5, 9217-9233; (b) X. Chen, L. Liu, P. Y. Yu
and S. S. Mao, Science, 2011, 331, 746-750; (c) S. K. Choi, S. Kim, S.
K. Lim and H. Park, J. Phys. Chem. C, 2010, 114, 16475-16480; (d) A.
L. Linsebigler, G. Lu and J. T. Yates, Chem. Rev., 1995, 95, 735-758; (e)
Figure 9. Recyclability of the catalyst
Conclusions
7
8
9
Environ. Sci. Technol., 2008, 42, 8547–8551.
L.W. Zhang, H.-Bo Fu and Y.F. Zhu, Adv.Funct. Mater., 2008, 18,
In summary, Graphene oxide-TiO
synthesised and fully characterized by FT-IR, FT-Raman, XRD,
XPS, FESEM, TEM, EDAX, and N adsorption–desorption. The
GO-TiO has been found to be an efficient heterogeneous catalyst
2 2
composites (GO-TiO ) has been
2
180-2189.
J. H. Byeon and J. W. Kim, J. Mater. Chem. A., 2014, 2, 6939-6944.
D. S. R. Josephine, B. Sakthivel, K. Sethuraman, and A.
Dhakshinamoorthy, ChemPlusChem, 2015, 80, 1472–1477.
2
1
0
2
for the synthesis pyrazoles derivatives from aldehydes, 11 J. Khalafy, A. P. Marjani, F. Salami, Tetrahedron Lett., 2014, 55
6671-6674.
malononitrile, and phenyl hydrazine and pyridines derivatives from
aldehydes, thiophenol and malononitrile in aqueous medium at room 12 (a) F. Nemati, S. H. Nikkhah, A. Elhampour, Chinese Chemical
Letters, 2015, 26, 1397–1399; (b) P. Manna, P. K. Maiti, Tetrahedron
Lett., 2015, 56, 5094–5098.
temperature in high yields. The developed catalyst is very cheap,
easily recovered at the end of the reaction, and recycled up to five
times without significant loss in catalytic activity.
1
1
3 (a) A.M. Mohamed, W.A. El-Sayed, M.A. Alsharari, Arch. Pharm.
Res. 2013, 36 1055–1065; (b) S.G. Alegaon, K.R. Alagawadi, M.K.
Garg, K. Dushyant and D. Vinod, Bioorg. Chem. 2014, 54, 51–59;
(c) R. Sridhar, P.T. Perumal and S. Etti, Bioorg. Med. Chem. Lett.,
2004, 14, 6035–6040.
Notes and references
a
Department of Applied Chemistry, Indian School of Mines, Dhanbad-
4 (a) I. Celik, N. Kanıskan and S. Kokten, Tetrahedron, 2009, 65, 328;
8
26004, India
(b) C. Kashima, Y. Miwa, S. Shibata and H. Nakozono, J.
b
Department of Chemistry, Vidya Vihar Institute of Technology, Purnea-
Heterocycl. Chem., 2003, 40, 681.
15 (a) V. Perrier, A. C. Wallace, K. Kaneko, J. Safar, S. B. Prusiner and F.
E. Cohen, Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 6073; (b) A. A.
Nirschl, L. G. Hamann, US Pat. Appl. Publ. 2005, 182, 105.
Phone number: +91 9431126250
(
1
6
S. Maddila, S. Rana, R. Pagadala, S. Kankala, S. Maddila, S. B.
Jonnalagadda, Catalysis Commun., 2015, 61, 26–30.
*
1
7
(a) S. Mishra and R. Ghosh, Synth. Commun., 2012, 42, 2229-2244; (b)
K. Guo, M. J. Thompson and B. J. Chen, Org. Chem., 2009, 74, 6999-
We are thankful to the CRF ISM, SAIF IIT Madras, SAIF Panjab
University, STIC, Kochi, and IISER Bhopal for providing help in
7
006.
the analysis of the samples. SK acknowledges the receipt of ISM 18 M. Srivastava, P. Rai, J. Singh and J. Singh, RSC Adv., 2013, 3, 16994-
6998.
1
fellowship.
1
9
N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A.
Chizhik, E. V. Buzaneva and A. D. Gorchinskiy, Chem. Mater., 1999,
1
(a) X. Yang, Y. Tu, L. Li, S. Shang and X. M. Tao, ACS Appl. Mater.
1
1, 771–778.
A. K. Patra, S. K. Das and A. Bhaumik, J. Mater. Chem., 2011, 21,
925-3930.
(a) T. Szabo, O. Berkesi and I. Dekany, Carbon,2005, 43, 3186-3189;
b) A. Bagri, C. Mattevi, M. Acik, Y. J. Chabal, M. Chhowalla and V. B.
Interfaces, 2010, 2, 1707-1713; (b) Y. Matsumoto, M. Koinuma, S. Ida,
S. Hayami, T. Taniguchi, K. Hatakeyama, H. Tateishi, Y. Watanabe and
S. Amano, J. Phys. Chem. C, 2011, 115, 19280-19286; (c) Y. Zhu, D. K.
James and J. M. Tour, Adv. Mater., 2012, 24, 4924-4955; (d) S. H. Lee,
H. W. Kim, J. O. Hwang, W. J. Lee, J. Kwon, C. W. Bielawski, R. S.
Ruoff and S. O. Kim, Angew. Chem. Int. Ed., 2010, 49, 10084-1088.
(a) S. S. Li, J. J. Lv, Y. Y. Hu, J. N. Zheng, J. R. Chen, A. J. Wang
and J. J. Feng, J. Power Sources, 2014, 247, 213-218; (b) Y. L. Min,
K. Zhang, W. Zhao, F. C. Zheng, Y. C. Chen and Y. G. Zhang,
Chem. Eng. J., 2012, 194, 203-210; (c) H. P. Mungse, S. Verma, N.
Kumar, B. Sain and O. P. Khatri, J. Mater. Chem., 2012, 22, 5427-
2
2
0
1
3
(
Shenoy, Nat. Chem., 2010, 2, 581-587.
Y. Zhang, C. Zhong, Q. Zhang, B. Chen, M. He and B. Hu, RSC Adv.,
2
2
2
2
2
015, 5, 5996–6005.
3 (a) K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud’homme, I. A.
Aksay and R. Car, Nano Lett., 2008, 8, 36-41; (b) G. K. Ramesha and S.
Sampath, J. Phys. Chem. Lett., 2009, 113, 7985-7989.
2
2
2
4
5
6
K. Dai, L. Lu, Q. Liu, G. Zhu, Q. Liua and Z. Liua, Dalton Trans., 2014,
3, 2202-2210.
M. Ali Nasseri, A. Allahresani and H. Raissi, RSC Adv., 2014, 4, 26087-
6093.
F. Liu, J. Sun, L. Zhu, X. Meng, C. Qi and F.-S. Xiao, J. Mater. Chem.,
012, 22, 5495-5502.
5
433; (d) Z. Li, S. Wu, H. Ding, Da. Zheng, J. Hu, X. Wang, Q. Huo,
4
J. Guan and Q. Kan, New J. Chem., 2013, 37, 1561-1568; (e) P. K.
Khatri, S. Choudhary, R. Singh, S. L. Jain and O. P. Khatri, Dalton
Trans., 2014, 43, 8054-8061; (f) H. Su, Z. Li, Q. Huo, J. Guan and Q.
Kan, RSC Adv., 2014, 4, 9990-9996.
(a) Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan and J. R. Gong, J. Am.
Chem. Soc., 2011, 133, 10878-10884; (b) Y. Liang, H. Wang, H. S.
Casalongue, Z. Chen and H. Dai, Nano Res., 2010, 3, 701-705; (c) T.
2
2
3
2
2
7
8
J. H. Byeon and J.W. Kim J. Mater. Chem. A., 2014, 2, 6939-6944.
Liu, H. Bai, Y. Wang, Z. Liu, X. Zhang and D. D. Sun, Adv. Funct.
Mater., 2010, 20, 4175-4181.
6
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins