C O M M U N I C A T I O N S
Scheme 4. Completion of the Total Synthesisa
Scheme 2. Synthesis of the (+)-Brefeldin A Corea
a (a) KHMDS, DME, then 17 to rt (E/Z > 12/1, 81%). (b) C.A.N., 4:
1 ) acetone: water. (c) 1 N aq NaOH, THF, MeOH (76%, two steps). (d)
MsCl, Et3N, 2,4,6-trichlorobenzoyl chloride, xs. 4-DMAP, toluene, ∆ (61%).
(e) TBAF, THF, rt (77%).
The spectral data as well as the sign and magnitude of rotation
matched those of an authentic sample of (+)-brefeldin A. Thus,
(+)-brefeldin A is available in a convergent fashion from three
components: aldehyde-amide 13, ethyl propiolate, and sulfone 22.
All of the stereochemistry evolves from two palladium-catalyzed
AAA reactions. The effectiveness of the introduction of the upper
side chain via the new methodology described which achieves a
clean chemoselective reduction of an alkyne to a trans-alkene is
noteworthy. This work demonstrates the utility of 3, which is
available via a catalytic asymmetric route, as a “chiral aldehyde”
equivalent, especially in TMM-PdL2 cycloadditions.
a (a) NaIO4, 5% OsO4, THF/H2O (84%). (b) DIBAL-H, B. H. T., Toluene
(>96/4 dr).(c) TBDMSOTf, pyridine (74%, two Steps). (d) (iPr)2MgCl,
MeO(Me)NH-HCl, THF, -10 °C. (e) DBU, CH2Cl2 (72%, two Steps). (f)
LiCCCO2Et, THF/HMPA ) 5/1, -78 °C (>6:1 dr, 88%). (g) (EtO)3SiH,
1% Cp*Ru(CH3CN)3PF6, CH2Cl2 (92%). (h) TBDMSOTf, pyridine, CH2Cl2.
(i) DIBAL-H, THF, -78 °C (81%, two Steps).
Scheme 3. Lower Side Chain Synthesisa
Acknowledgment. We thank the National Science Foundation
and the General Medical Sciences Institute of the National Institutes
of Health (GM 13598) for their generous support of our work. Mass
spectra were provided by the Mass Spectrometry Regional Center
of the University of California-San Francisco, supported by the NIH
Division of Research Resources.
a p-Methoxyphenol, 0.25% Pd2dba3-CHCl3, 0.75% ligand 4, toluene
(>96/4 regio., up to 90% ee, 95%). (b) 9-BBN, THF, then H2O2, aq NaOH.
(c) PCC, CH2Cl2, Celite, 4Å MS then EtO2CC(H)PPh3 (65% two steps).
(d) NaBH4, MeOH, 5% NiCl2, 0 °C. (e) DIBAL-H, THF (92%, two steps).
(f) DIAD, PPh3, 1-phenyl-5-thioltetrazole, THF. (g) Oxone, MeOH, H2O,
60 °C (88%, two steps).
Supporting Information Available: Experimental procedures for
7, 9a-9d, 14, 15, 19, and 25 and characterization data for all
compounds (PDF). This material is available free of charge via the
HMPA at -78 °C afforded propargyl alcohol 14 in 6:1 dr (88%
yield) with Felkin-Ahn control, whereas the epimer was also
available in 1:6 dr (92% yield) by simply using DME, presumably
under chelation control. Exposing this adduct 14 to ruthenium-
catalyzed trans-hydrosilylation14 followed by addition of cesium
fluoride and ethanol gave enoate 15 directly in one step in 92%
yield. Thus, the upper side chain was introduced in two steps, and
this sequence constitutes a convenient and general entry to
γ-hydroxy-R,â-trans-enoates. After silyl protection, the amide 16
was chemoselectively reduced to aldehyde 17 in 81% yield in the
presence of the enoate by utilizing one equivalent of DIBAL-H.
Scheme 3 summarizes the synthesis of the lower side chain. An
enantio- and regioselective palladium-catalyzed AAA of crotyl
carbonate 18 afforded the C(4) fragment 19 with 96:4 regioselec-
tivity and 90% ee in 93% yield.15 Olefin 19 was transformed to
enoate 20 via hydroboration-oxidation followed by one-pot oxida-
tion to the aldehyde and in situ Wittig reaction with an overall
yield of 65%. Nickel dichloride-catalyzed sodium borohydride 1,4-
reduction followed by DIBAL-H reduction converted the enoate
20 directly to saturated alcohol 21 in 92% yield (two steps).
Completion of the sulfone component 22 involved Mitsonobu
coupling of 1-phenyl-5-thioltetrazole followed by Oxone oxidation16
in 88% yield.
References
(1) Trost, B. M.; Crawley, M. L. J. Am. Chem. Soc. 2000, 122, 6120 and
references therein.
(2) For a review on dynamic kinetic transformations, see: Ward, R. S.
Tetrahedron: Asymmetry 1995, 6, 1475.
(3) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc. 1999, 121, 3543.
(4) Krief, A.; Lecomte, P.; Demounte, J. P.; Dumont, W. Synthesis 1990,
275.
(5) Trost, B. M.; Yang, B.; Miller, M. L. J. Am. Chem. Soc. 1989, 111, 6842.
(6) (a) Feringa, B. L.; de Jong, J. C.; van Bolhuis, F. Tetrahedron: Asymmetry
1991, 2, 1247. (b) Feringa, B. L.; Rispens, M. T.; Keller, E.; de Lange,
B.; Zijlstra, R. W. J. Tetrahedron: Asymmetry 1994, 5, 607.
(7) Trost, B. M.; Chan, D. M. T. J. Am. Chem. Soc. 1983, 105, 2326.
(8) Singleton, V. L.; Bohonos, N.; Ullstrupp, J. Nature 1958, 181, 1072.
(9) Cushman, M.; Fox, B. M.; Vroman, J. A.; Fanwick, P. E. J. Med. Chem.
2001, 44, 3915 and references cited therein.
(10) For most recent syntheses: (a) Kim, D.; Lee, J.; Shim, P. J.; Lim, J. I.;
Doi, T.; Kim, S. J. Org. Chem. 2002, 67, 772. (b) Ibid., 764. (c) Suh,
Y.-G.; Seo, S. Y.; Jung, J.-K.; Park, O.-H.; Jeon, R. A. Tetrahedron Lett.
2001, 42, 691. (d) previous Trost-group synthesis: Trost, B. M.; Lynch,
J.; Renaut, P.; Steinman, D. H. J. Am. Chem. Soc. 1986, 108, 284.
(11) Pappo, R.; Allen, D. S., Jr.; Lemieux, R. U.; Johnson, W. S. J. Org. Chem.
1956, 21, 478.
(12) Yamamoto, H.; Iguchi, S.; Nakai, H.; Hayashi, M. J. Org. Chem. 1979,
44, 1363.
(13) Williams, J. M.; Jobson, R. B.; Yasuda, N.; Marchegini, G.; Dolling, U.
H.; Grabowski, E. J. J. Tetrahedron Lett. 1995, 36, 5461
(14) Trost, B. M.; Ball, Z. T. J. Am. Chem. Soc. 2001, 123, 12726.
(15) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc. 1999, 121, 4545.
(16) Trost, B. M.; Curran, D. P. Tetrahedron Lett. 1981, 22, 1287.
(17) Yamaguchi, M.; Innaga, J.; Hirata, K. Saeki, H.; Katsuki, T. Bull. Chem.
Soc. Jpn. 1979, 52, 1989.
Julia olefination proved nontrivial. Optimization involved use
of KHMDS in DME at -78 °C, whereby a 12:1 E:Z selectivity for
formation of alkene 23 was obtained (see Scheme 4). Completion
of the synthesis proceeded uneventfully and employed the Yamagu-
chi method for macrolactonization.17
JA026438B
9
J. AM. CHEM. SOC. VOL. 124, NO. 32, 2002 9329