ChemComm
Communication
Table 3 Influence of substituents attached to aniline on the carbonylation
reaction
This work was supported by the EPFL and the Swiss National
Science Foundation.
a
Entry
R
Yield of 30 (%)
Notes and references
1 (a) T. Cupido, J. T. Puche, J. Spengler and F. Albericio, Curr. Opin.
Drug Discovery Dev., 2007, 10, 768; (b) J. W. Bode, Curr. Opin. Drug
Discovery Dev., 2006, 9, 765; (c) J. M. Humphrey and
A. R. Chamberlin, Chem. Rev., 1997, 97, 2243.
1
2
3
4
5
6
7
8
H
62
64
57
69
54
66
64
66
78
51
48
61
32
8
3-NO2
3-CN
4-CN
3-F
4-F
3-Cl
2 C. Singh, V. Kumar, U. Sharma, N. Kumar and B. Singh, Curr. Org.
Synth., 2013, 10, 241. (The references cited in this publication).
3 V. R. Pattabiraman and J. W. Bode, Nature, 2011, 480, 471.
4 C. L. Allen and J. M. Williams, J. Chem. Soc. Rev., 2011, 40, 3405.
5 C. Gunanathan, Y. B. David and D. Milstein, Science, 2011, 317, 790.
6 (a) A. Brennfhrer, H. Neumann and M. Beller, Angew. Chem., Int. Ed.,
2009, 48, 4114; (b) C. E. Houlden, M. Hutchby, C. D. Bailey, J. G. Ford,
N. G. Simon, M. R. Tyler, G. C. Gag, K. I. L. Jones and B. Milburn, Angew.
Chem., Int. Ed., 2009, 48, 1830; (c) R. Giri and J. Q. Yu, J. Am. Chem. Soc.,
2008, 130, 14082; (d) S. Inoue, H. Shiota, Y. Fukumoto and N. Chatani,
J. Am. Chem. Soc., 2009, 131, 6898; (e) R. Lang, L. J. Shi, D. F. Li, C. G. Xia
and F. W. Li, Org. Lett., 2012, 14(16), 4130; ( f ) A. Takacs, A. Czompa,
G. Krajsovszky, P. Matyus and L. Kollar, Tetrahedron, 2012, 68, 7855.
7 B. Gabriele, G. Salerno, L. Veltri and M. Costa, J. Organomet. Chem.,
2001, 622, 84.
4-Cl
9
3,5-CF3
3-Me
4-Me
3-OMe
4-OMe
2,4,6-Me
10
11
12
13
14
Reaction conditions: 1 (15 ml), 20 (1 mmol), PdCl2 (5 mol% based on 20),
Xantphos (1.20 mmol) DTBP (1.2 mmol), CO (50 atm), 125 1C, 24 h.
a
Isolated yield based on the amine.
8 Y. Izawa, I. Shimizu and A. Yamamoto, Bull. Chem. Soc. Jpn., 2004,
77, 2033.
9 S. I. Lee, S. U. Son and Y. K. Chung, Chem. Commun., 2002, 1310.
10 J. R. Martinelli, D. A. Watson, D. M. M. Freckmann, T. E. Barder and
S. L. Buchwald, J. Org. Chem., 2008, 73, 7102.
11 H. Zhang, R. Y. Shi, A. X. Ding, L. J. Lu, B. Chen and A. W. Lei,
Angew. Chem., Int. Ed., 2012, 51, 12542.
12 D. D. Liang, Z. W. Hu, J. L. Peng, J. B. Huang and Q. Zhu, Chem.
Commun., 2013, 49, 173.
13 (a) K. D. Hesp, R. G. Bergman and J. A. Ellman, J. Am. Chem. Soc.,
2011, 133, 11430; (b) Y. Du, T. K. Hyster and T. Rovis, Chem.
Commun., 2011, 47, 12074.
14 K. Muralirajan, K. Parthasarathy and C. H. Cheng, Org. Lett., 2012,
14, 4262.
Scheme 3 The proposed reaction mechanism.
15 J. Tsuji, Palladium Reagents and Catalysts, 2003.
´
16 B. Mandy-Nicole (nee Gensow), F. Zoraida and Piet W. N. M. van
The full mechanistic details of this transformation have not been
determined, however, in the presence of the radical scavenger TEMPO
the reaction is completely suppressed, indicative of a radical process,28
which is similar to the one proposed by Huang and co-workers for the
formation of esters from alkanes and alcohols using a similar catalytic
system. A plausible reaction mechanism is shown in Scheme 3. In the
presence of a ligand, sequential oxidation of the Pd(0) bis-phosphine
catalyst generated in situ with the anilino and benzyl radicals produced
in the presence of DTBP leads to the formation of intermediate (B).
Subsequent insertion of CO gives intermediate (C) which can undergo
reductive elimination to afford the final product. The concentration
of aniline strongly influences the yield of the product, i.e. at high
concentrations the yield of 1,3-diphenylurea is increased (see ESI‡),
presumably because the aniline can more easily react with itself and CO
to form 1,3-diphenylurea.
ESI-MS was used to analyze the reaction and a peak that may
be tentatively assigned to [(Xantphos)PdCH2Ph]+ (Fig. S1, ESI‡)
was observed. This species could be derived from either B or C
(see ESI‡ for further details).
In summary, a convenient and efficient method for the synth-
esis of amides via Pd-catalyzed oxidative carbonylation of C–H
bonds with CO has been devised. The method represents a
practical and efficient approach for the synthesis of substituted
phenyl amides from simple alkanes.
Leeuwen, Chem. Soc. Rev., 2009, 38, 1099.
17 P. Xie, Y. J. Xie, B. Qian, H. Zhou, C. G. Xia and H. M. Huang, J. Am.
Chem. Soc., 2012, 134, 9902.
18 F. M. Miloserdov and V. V. Grushin, Angew. Chem., Int. Ed., 2012, 51, 3668.
19 J. J. Yin and S. L. Buchwald, J. Am. Chem. Soc., 2002, 124, 6043.
20 H. J. Chen, C. B. Cai, X. H. Liu, X. W. Li and H. F. Jiang, Chem.
Commun., 2011, 47, 12224.
21 (a) H. M. Colquhoun, D. J. Thompson and M. V. Twigg, Carbonylation,
Direct Synthesis of Carbonyl Compounds, Plenum Press, New York, 1991;
(b) M. Beller, Carbonylation of Benzyl- and Aryl-X Compounds, In Applied
Homogeneous Catalysis with Organometallic Compounds, ed. B. Cornils and
´
W. A Herrmann, 2nd edn, Wiley-VCH, Weinheim, 2002; (c) L. Kollar,
Modern carbonylation methods, Wiley-VCH, Verlag GmbH & Co. KgaA,
Weinheim, 2008; (d) C. F. J. Barnard, Organometallics, 2008, 27, 5402;
(e) A. Brennfuhrer, H. Neumann and M. Beller, Angew. Chem., Int. Ed.,
2009, 48, 4114; ( f ) X. F. Wu, H. Neumann and M. Beller, Chem. Soc. Rev.,
2011, 40, 4986.
´
´
22 F. Estevan, A. Garcıa-Bernabe, P. Lahuerta, M. Sanau, M. A. Ubeda
and J. R. Galan-Mascaros, J. Organomet. Chem., 2000, 596, 248.
23 C. E. Housecroft, B. A. M. Shaykh, A. L. Rheingold and B. S. Haggerty,
Acta Crystallogr., Sect. C, 1990, 46, 1549.
24 M. Tromp, J. A. van Bokhoven, G. P. F. van Strijdonck, P. W. N. M. van
Leeuwen, D. C. Koningsberger and D. E. Ramaker, J. Am. Chem. Soc.,
2004, 127, 777.
25 E. Burello and G. Rothenberg, Adv. Synth. Catal., 2005, 347, 1969.
26 T. M. Konrad, J. A. Fuentes, A. M. Z. Slawin and M. L. Clarke, Angew.
Chem., Int. Ed., 2010, 49, 9917.
27 Y. R. Luo, Handbook of Bond Dissociation Energies in Organic Com-
pounds, CRC Press, Boca Raton, FL, 2002.
28 L. Boisvert, M. C. Denney, S. K. Hanson and K. I. Goldberg, J. Am.
Chem. Soc., 2009, 131, 1580.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 341--343 | 343