DOI: 10.1039/C4RA12552E
RSC Advances
the region d2 z d3 be occupied by a Quartz substrate
Figure 11). The regions z 0 and are
their spectroscopic data identical to that reported in the
5
0
literature.
(
1
z (d d d )
1
2
3
1,3-Diphenylurea (Table 1, entries 1 and 2): H NMR (400
4
5
MHz, DMSO) δ = 8.60 (s, 2H), 7.43 (d, J = 8.5 Hz, 4H), 7.25 (t, J
considered vacuum. Assume a polarized plane wave from z 0
=
7.7 Hz, 4H), 6.95 (t, J = 7.2 Hz, 2H).
is axially incident on composite structure. The electric fields of
4
7,48
N-(4-Methoxyphenyl)-N'-phenylurea (Table 1, entries 3 and 4):
5
incident, reflected and transmitted are as:
1
i
K0
z
H NMR (300 MHz, DMSO) δ = 8.52 (s, 1H), 8.41 (s, 1H), 7.40
Einc (r) [as u y ap u x ] e
,
z 0
z 0
z (d
(1)
(d, J = 8.5 Hz, 2H), 7.34 (d, J = 9.0 Hz, 2H), 7.25 (t, J = 7.7 Hz,
2H), 6.92 (t, J = 7.4 Hz, 1H), 6.83 (d, J = 9.0 Hz, 2H), 3.70 (s,
i K0
z
E
E
ref (r) [r
tr (r) [t
s
u
y
r
t
p
u
x
] e
,
50
i
K0 (z(d1 d2 d3 ) )
s
u
y
p
u
x
] e
,
d d )
1 2 3
3
H).
N-(2-Methylphenyl)-N'-phenylurea (Table 1, entry 5): H NMR
300 MHz, DMSO) δ = 8.97 (s, 1H), 7.89 (s, 1H), 7.81 (dd, J =
.0, 8.0 Hz, 1H), 7.43 (dt, J = 1.4, 8.5 Hz, 3H), 7.28-7.23 (m,
55 3H), 7.16-7.08 (m, J = 7.5, 15.0 Hz, 3H), 6.97-6.88 (m, 2H), 2.22
s, 3H).
1
The amplitudes of incident plane wave, and reflected and
transmitted waves for S- or P- polarizations are ( a ,a )
,
p
(
1
s
(
r ,r ) and (t ,t ), respectively K 2 / is
s
p
s
p
0
0
0
0
(
1
0
the free space wave number, 0 is the free space wavelength,
1
N-(4-Nitrophenyl)-N'-phenylurea (Table 1, entries 6 and 7): H
12
1
7
1
0
8.85410 Fm
,
4 10 Hm
are the
NMR (500 MHz, DMSO-d ) δ = 9.42 (s, 1H), 8.92 (s, 1H), 8.20
0
6
(d, J = 9.0 Hz, 2H), 7.70 (d, J = 9.0 Hz, 2H), 7.07 (d, J = 7.3 Hz,
permittivity and permeability of free space (vacuum) and ux,y,z
are the unit vectors in Cartesian coordinates system.
6
6
7
7
0
5
0
5
2H), 7.31 (t, J = 7.7 Hz, 2H), 7.04 (t, J = 7.5 Hz, 1H).
Acknowledgement
We gratefully acknowledge the Iranian Nano Council and the
University of Qom for the support of this work.
References
1
Y. W. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. W. Cai,
P. J. Ferreira, et al., Science, 2011, 332, 1537.
M. D. Stoller, S. Park, Y. Zhu, J. An, R. S. Ruoff, Nano Lett.,
2008, 8, 3498.
2
1
5
Figure 11. Schematic of the boundary-value problem for optical
modeling.
3
J. Yang, S. Y. Deng, J. P. Lei, H. X. Ju, S. Gunasekaran,
Biosensors and Bioelectronics, 2011, 29, 159.
4
T. Ramanathan, S. Stankovich, D. Dikin, A. H. Liu, H. Shen,
The amplitudes of the reflectance and transmittance in
conjunction with the continuity of the tangential components of
S. T. Nguyen, L. C. Brinson, Journal of Polymer Science Part B:
Polymer Physics, 2007, 45, 2097.
2
0
4
9
electrical and magnetic fields at interfaces can be calculated as:
5
R. Muszynski, R. B. Seger, P. V. Kamat, J. Phys. Chem. C,
t
a
s
2008, 112, 5263.
6 P. V. Kamat, J. Phys. Chem. Lett., 2010, 1, 520.
7 B. Seger, P. V. Kamat, J. Phys. Chem. C, 2008, 113, 7990.
80 8 Y. Zhu, M. D. Stoller, W. Cai, A. Velamakanni, R. D. Piner,
D. Chen, et al., ACS Nano, 2010, 4, 1227.
s
tp
ap
(2)
1
K
.
M
.
K
.
r
0
s
0
r
p
9
I. V. Lightcap, T. H. Kosel, P. V. Kamat, Nano Lett., 2010, 10,
The different terms and parameters of this equation are given
4
7
577.
in detail by Lakhtakia. Herein, the absorbance for natural light
1
0 S. Yongchao, T. S. Edward, Chem. Mat., 2008, 20, 6792.
TS T
P
2
5
is
determined
as
,
where
A Log[
]
85 11 J. Yang, S. Gunasekaran, Carbon, 2013, 51, 36.
2
1
1
2 R. S. Dey, C. R. Raj, J. Phys. Chem. C, 2010, 114, 21427.
3 A. K. Singh, M. A. Ribas, B. I. Yakobson, ACS Nano, 2009, 3,
2
ti
.
Ti
T ;T
i, j
;i, j s, p
1657.
4 Z. B. Lei, L. Lu, X. S. Zhao, Energy & Environmentala
ji
aj
js, p
1
Typical experimental procedure for the N-arylation of 90 Science, 2012, 5, 6391.
phenylurea with aryl halides
15 Y. Chen, X. Zhang, D. Zhang, P. Yu, Y. Ma, Carbon, 2011,
A Smith process vial was charged with 18 mg RGO/Cu NPs
and K CO (1 mmol). After sealing the cap and twice purging
49, 573.
3
3
4
0
5
0
16 D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff, Chem.
Soc. Rev., 2010, 39, 228.
2
3
with N , the vial was charged with 0.5 mL of DMF and stirred at
2
room temperature for 10 min. A solution of 0.6 mmol of aryl 95 17 J. Li, C.-Y. Liu, Eur. J. Inorg. Chem., 2010, 2010 (8), 1244.
halide and 0.5 mmol of phenylurea in 0.5 mL of DMF was
introduced via syringe and the mixture was vigorously stirred at
room temperature for 30 min and the vial was irradiated at 130 °C
for 1 h by microwave. The reaction mixture was cooled to room
18 L. Dong, R. R. S. Gari, Z. Li, M. M. Craig, S. Hou, Carbon,
2010, 48 (3), 781.
19 M. D. Malinsky, K. L. Kelly, G. C. Schatz, R. P. Van Duyne,
J. Am. Chem. Soc., 2001, 123, 1471.
organic extracts were dried with anhydrous Na SO and
Y. Grunfeld, S. Ikher, M. Huszar, R. C. Zatcoff, M. Marikovsky,
Wound Repair Regen, 2010, 18, 266.
2
4
evaporated under reduced pressure. The residue was purified by
column chromatography. All products are known in the literature
and were characterized by FT-IR, NMR and melting points and