Article
toxin C-fragment in PMA activated primary human B cells.
Journal of Medicinal Chemistry, 2009, Vol. 52, No. 18 5747
Schreiber, R. D. Interferon-γ and cancer immunoediting. Immu-
nologic. Res. 2005, 32, 231–245.
Biochem. Biophys. Res. Commun. 2008, 377, 1299–1303. (b) Chain,
B. M.; Free, P.; Medd, P.; Swetman, C.; Tabor, A. B.; Terrazzini, N. The
expression and function of cathepsin E in dendritic cells. J. Immunol.
(45) Tesmer, L. A.; Lundy, S. K.; Sarkar, S.; Fox, D. A. Th17 cells in
human disease. Immunological. Rev. 2008, 223, 87–113.
(46) Janeway, C. A.; Travers, P.; Walport, M.; Shlomchik, M. Antigen
presentation to T lymphocytes. Immunobiology, the Immune Sys-
tem in Health and Disease, 6th ed.; Garland Publishing: New York,
2005; pp 169-202.
(47) Riese, R. J.; Mitchell, R. N.; Villadangos, J. A.; Shi, G.-P.; Palmer,
J. T.; Karp, E. R.; de Sanctis, G. T.; Ploegh, H. L.; Chapman, H. A.
Cathepsin S activity regulates antigen presentation and immunity.
J. Clin. Invest. 1998, 101, 2351–2363.
(48) Mari ꢀc , M. A.; Taylor, M. D.; Blum, J. S. Endosomal aspartic
proteinases are required for invariant-chain processing. Proc. Natl.
Acad. Sci. U.S.A. 1994, 91, 2171–2175.
(49) Constantino, C. M.; Hang, H. C.; Kent, S. C.; Hafler, D. A.;
Ploegh, H. L. Lysosomal cysteine and aspartic proteases are
heterogeneously expressed and act redundantly to initiate human
invariant chain degradation. J. Immunol. 2008, 180, 2876–2885.
(50) Keilov ꢀa , H.; Tom ꢀa ꢁs ek, V. Effect of pepsin inhibitor from Ascaris
lumbricoides on cathepsin D and E. Biochim. Biophys. Acta 1972,
284, 461–464.
2005, 174, 1791–1800. (c) Nishioku, T.; Hashimoto, K.; Yamashita, K.;
Liou, S.-Y.; Kagamiishi, Y.; Maegawa, H.; Katsube, N.; Peters, C.; von
Figura, K.; Saftig, P.; Katunuma, N.; Yasutomo, K.; Nakanishi, H.
Involvement of cathepsin E in exogenous antigen processing in primary
cultured murine microglia. J. Biol. Chem. 2002, 277, 4816–4822. (d)
Zhang, T.; Maekawa, Y.; Yamamoto, K.; Ishikawa, H.; Nashed, B. F.;
Dainichi, T.; Hisaeda, H.; Sakai, T.; Kasai, M.; Mizuochi, T.; Asao, T.;
Katunuma, N.; Himeno, K. Pepstatin A-sensitive aspartic proteases in
lysosome are involved in degradation of the invariant chain and antigen-
processing in antigen presenting cells of mice infected with Leishmania
major. Biochem. Biophys. Res. Commun. 2000, 276, 693–701.
27) Janeway, C. A.; Travers, P.; Walport, M.; Shlomchik, M. T cell-
mediated immunity. Immunobiology, The Immune System in Health
and Disease, 6th ed.; Garland Publishing: New York, 2005; pp 319-366.
28) Zaidi, N.; Herrmann, T.; Baechle, D.; Schleicher, S.; Gogel, J.;
Driessen, C.; Voelter, W.; Kalbacher, H. A new approach for
distinguishing cathepsin E and D activity in antigen-processing
organelles. FEBS J. 2007, 274, 3138–3149.
(
(
(
(
(
29) Janeway, C. A.; Travers, P.; Walport, M.; Shlomchik, M. Auto-
immunity and transplantation. Immunobiology, The Immune Sys-
tem in Health and Disease, 6th ed.; Garland Publishing: New York,
(51) Saftig, P.; Hetman, M.; Schmahl, W.; Weber, K.; Heine, L.;
¨
Mossmann, H.; Koster, A.; Hess, B.; Evers, M.; von Figura, K.;
Peters, C. Mice deficient for the lysosomal proteinase cathepsin D
exhibit progressive atrophy of the intestinal mucosa and profound
destruction of lymphoid cells. EMBO J. 1995, 14, 3599–3608.
(52) Brey, W. W.; Edison, A. S.; Nast, R. E.; Rocca, J. R.; Saha, S.;
Withers, R. S. Design, construction, and validation of a 1-mm
triple-resonance high-temperature-superconducting probe for
NMR. J. Magn. Reson. 2006, 179, 290–293.
(53) The default value of exhaustiveness (8) was sufficient to reproduce
the bound conformation of pepstatin A, but since compounds 1
and 3 have more rotatable bonds, a higher value (25) was used for
all docking studies.
2005; pp 557-612.
30) Trott, O.; Olson, A. J. AutoDock Vina: improving the speed and
accuracy of docking with a new scoring function, efficient optimi-
zation, and multithreading. J. Comput. Chem. 2009. DOI: 10.1002/
jcc.21334 (epub ahead of print).
31) Baldwin, E. T.; Bhat, T. N.; Gulnik, S.; Hosur, M. V.; Sowder, R.
C.; Cachau, R. E.; Collins, J.; Silva, A. M.; Erickson, J. W. Crystal
structures of native and inhibited forms of human cathepsin D:
implications for lysosomal targeting and drug design. Proc. Natl.
Acad. Sci. U.S.A. 1993, 90, 6796–6800.
(
(
(
32) Ostermann, N.; Gerhartz, B.; Worpenberg, S.; Trappe, J.; Eder, J.
Crystal structure of an activation intermediate of cathepsin E.
J. Mol. Biol. 2004, 342, 889–899.
(54) (a) Bernstein, N. K.; Cherney, M. M.; Yowell, C. A.; Dame, J. B.;
James, M. N. G. Structural insights into the activation of P. vivax
plasmepsin. J. Mol. Biol. 2003, 329, 505–524. (b) Borelli, C.; Ruge,
E.; Schaller, M.; Monod, M.; Korting, H. C.; Huber, R.; Maskos, K. The
crystal structure of the secreted aspartic proteinase 3 from Candida
albicans and its complex with pepstatin A. Proteins: Struct., Funct.,
Bioinf. 2007, 68, 738–748. (c) Fitzgerald, P. M. D.; McKeever, B. M.;
VanMiddlesworth, J. F.; Springer, J. P.; Heimbach, J. C.; Leu, C.-T.;
Herber, W. K.; Dixon, R. A. F.; Darke, P. L. Crystallographic analysis of
a complex between human immunodeficiency virus type 1 protease and
33) Sielecki, A. R.; Fedorov, A. A.; Boodhoo, A.; Andreeva, N. S.; James,
M. N. G. Molecular and crystal structure of monoclinic porcine
˚
pepsin refined at 1.8 A resolution. J. Mol. Biol. 1990, 214, 143–170.
34) Rao-Naik, C.; Guruprasad, K.; Batley, B.; Rapundalo, S.; Hill, J.;
Blundell, T.; Kay, J.; Dunn, B. M. Exploring the binding prefer-
ences/specificity in the active site of human cathepsin E. Proteins:
Struct., Funct., Bioinf. 1995, 22, 168–181.
˚
(
35) Ghoneim, O. M.; Legere, J. A.; Golbraikh, A.; Tropsha, A.; Booth,
acetyl-pepstatin at 2.0 A resolution. J. Biol. Chem. 1990, 265, 14209–
R. G. Novel ligands for the human histamine H
1
receptor: synth-
14219. (d) Fujimoto, Z.; Fujii, Y.; Kaneko, S.; Kobayashi, H.; Mizuno,
H. Crystal structure of aspartic proteinase from Irpex lacteus in
complex with inhibitor pepstatin. J. Mol. Biol. 2004, 341, 1227–
1235. (e) Fujinaga, M.; Chernaia, M. M.; Tarasova, N. I.; Mosimann,
S. C.; James, M. N. G. Crystal structure of human pepsin and its
complex with pepstatin. Protein Sci. 1995, 4, 960–972. (f) Kamitori, S.;
Ohtaki, A.; Ino, H.; Takeuchi, M. Crystal structures of Aspergillus
oryzae aspartic proteinase and its complex with an inhibitor pepstatin at
esis, pharmacology, and comparative molecular field analysis
studies of 2-dimethylamino-5-(6)-phenyl-1,2,3,4-tetrahydro-
naphthalenes. Bioorg. Med. Chem. 2006, 14, 6640–6658.
36) For example, conformations where the N-C direction was re-
versed, where the ligand folded back on itself, or where a unit other
than statine resided at the catalytic center.
37) Rich, D. H. Pepstatin-derived inhibitors of aspartic proteinases. A
close look at an apparent transition-state analogue inhibitor.
J. Med. Chem. 1985, 28, 263–273.
(
(
(
(
˚
1.9 A resolution. J. Mol. Biol. 2003, 326, 1503–1511. (g) Yang, J.;
Quail, J. W. Structure of the Rhizomucor miehei aspartic proteinase
˚
38) Scarborough, P. E.; Dunn, B. M. Redesign of the substrate
complexed with the inhibitor pepstatin A at 2.7 A resolution. Acta
specificity of human cathepsin D: the dominant role of position
287 in the S
39) Arnold, D.; Keilholz, W.; Schild, H.; Dumrese, T.; Stevanovi ꢀc , S.;
Rammensee, H.-G. Substrate specificity of cathepsins D and E
determined by N-terminal and C-terminal sequencing of peptide
pools. Eur. J. Biochem. 1997, 249, 171–179.
Crystallogr. D 1999, D55, 625–630.
2
subsite. Protein Eng. 1994, 7, 495–502.
(55) (a) Asojo, O. A.; Gulnik, S. V.; Afonina, E.; Yu, B.; Ellman, J. A.;
Haque, T. S.; Silva, A. M. Novel uncomplexed and complexed
structures of plasmepsin II, an aspartic protease from Plasmodium
falciparum. J. Mol. Biol. 2003, 327, 173–181. (b) Bone, R.; Vacca,
J. P.; Anderson, P. S.; Holloway, M. K. X-ray crystal structure of the
(
40) Copeland, R. A. Slow binding inhibitors. Evaluation of Enzyme
Inhibitors in Drug Discovery: a Guide for Medicinal Chemists and
Pharmacologists, Wiley & Sons: Hoboken, NJ, 2005; pp 141-177.
41) Marcinkeviciene, J.; Luo, Y.; Graciani, N. R.; Combs, A. P.;
Copeland, R. A. Mechanism of inhibition of β-site amyloid pre-
cursor protein-cleaving enzyme (BACE) by a statine-based peptide.
J. Biol. Chem. 2001, 276, 23790–23794.
HIV protease complex with L-700,417, an inhibitor with pseudo C
2
symmetry. J. Am. Chem. Soc. 1991, 113, 9382–9384. (c) Coates, L.;
Erskine, P. T.; Wood, S. P.; Myles, D. A. A.; Cooper, J. B. A neutron
Laue diffraction study of endothiapepsin: implications for the aspartic
proteinase mechanism. Biochemistry 2001, 40, 13149–13157. (d)
Fraser, M. E.; Strynadka, N. C. J.; Bartlett, P. A.; Hanson, J. E.; James,
M. N. G. Crystallographic analysis of transition-state mimics bound to
penicillopepsin: phosphorus-containing peptide analogues. Biochem-
istry 1992, 31, 5201–5214. (e) James, M. N. G.; Sielecki, A. R.;
Hayakawa, K.; Gelb, M. H. Crystallographic analysis of transition state
mimics bound to penicillopepsin: difluorostatine- and difluorostatone-
containing peptides. Biochemistry 1992, 31, 3872–3886.
(
(
42) Bull, H. G.; Thorberry, N. A.; Cordes, M. H. J.; Patchett, A. A.;
Cordes, E. H. Inhibition of rabbit lung angiotensin-converting
enzyme by N -[(S)-1-carboxy-3-phenylpropyl]-L-alanyl-L-proline
and N -[(S)-1-carboxy-3-phenylpropyl]-L-lysyl-L-proline. J. Biol.
R
R
Chem. 1985, 260, 2952–2962.
(
43) Bernardo, M. M.; Brown, S.; Li, Z.-H.; Fridman, R.; Mobashery,
S. Design, synthesis, and characterization of potent, slow-binding
inhibitors that are selective for gelatinases. J. Biol. Chem. 2002, 277,
(56) Arnold, K.; Bordoli, L.; Kopp, J.; Schwede, T. The SWISS-
MODEL workspace: a web-based environment for protein struc-
ture homology modelling. Bioinformatics 2006, 22, 195–201.
(57) Sielecki, A. R.; Fujinaga, M.; Read, R. J.; James, M. N. G.
11201–11207.
˚
(
44) Dunn, G. P.; Ikeda, H.; Bruce, A. T.; Koebel, C.; Uppaluri, R.; Bui,
J.; Chan, R.; Diamond, M.; White, J. M.; Sheehan, K. C. F.;
Refined structure of porcine pepsinogen at 1.8 A resolution.
J. Mol. Biol. 1991, 219, 671–692.