RSC Advances
Paper
yield of DPC were increased from 2 to 4 h (entries 11, 12) and
then kept nearly constant (entries 5, 13, 14). This possibly
suggests the reaction of CO2 with phenol in the presence of CCl4
reached equilibrium at 4 h.
5 S. N. Riduan and Y. Zhang, Dalton Trans., 2010, 39, 3347–
3357.
6 Y. Zhang, D. Li, S. Zhang, K. Wu and J. Wu, RSC Adv., 2014, 4,
16391–16396.
Fe3O4@SiO2–ZnBr2 with 15.1 wt% Zn loading can be easily
recovered with a permanent magnet aer the reaction and
reused in the next run without further treatment. The recyclable
performance was shown in Fig. 5. It can be seen that
Fe3O4@SiO2–ZnBr2 possessed excellent stability at the initial 4
runs, in which the yield of DPC changed in a small range from
7 M. S. Khan, M. N. Ashiq, M. F. Ehsan, T. He and S. Ijaz, Appl.
Catal., A, 2014, 487, 202–209.
8 B. M. Bhanage, S. I. Fujita, Y. Ikushima and M. Arai, Green
Chem., 2003, 5, 340–342.
9 Z. Zhang, S. Hu, J. Song, W. Li, G. Yang and B. Han,
ChemSusChem, 2009, 2, 234–238.
27.6 to 28.1%, followed by a slight drop. The yield was decreased 10 Z. Zhang, Y. Xie, W. Li, S. Hu, J. Song, T. Jiang and B. Han,
to 24.2% aer the 5th runs. The amount of Zn in the recovered Angew. Chem., Int. Ed., 2008, 47, 1127–1129.
catalyst, which was determined aer every recycle by AAS anal- 11 A. Correa and R. Martin, J. Am. Chem. Soc., 2009, 131, 15974–
ysis, was 14.8%, 14.9%, 14.6%, 13.7% and 13.0%, respectively, 15975.
aer each cycle. These results revealed that the drop in the 12 P. Unnikrishnan, P. Varhadi and D. Srinivas, RSC Adv., 2013,
catalytic activity could be ascribed to ZnBr2 leaching. The 3, 23993–23996.
decrease in Zn content aer the fourth run can be ascribed to 13 T. Iijima and T. Yamaguchi, Appl. Catal., A, 2008, 345, 12–17.
the following reason: the active species ZnBr2 supported on 14 H. Kawanami, A. Sasaki, K. Matsui and Y. Ikushima, Chem.
Fe3O4@SiO2 by impregnation method may not be steadily
adhere to the surface of the support under high pressure and 15 G. Z. Fan, Z. G. Wang, B. Zou and M. Wang, Fuel Process.
Commun., 2003, 7, 896–897.
temperature due to the weak interaction between them.
Technol., 2011, 92, 1052–1055.
16 C. Lim and I. S. Lee, Nano Today, 2010, 5, 412–434.
17 V. Polshettiwar, R. Luque, A. Fihri and H. Zhu, Chem. Rev.,
2011, 111, 3036–3075.
Conclusions
18 S. Abdolmohammadi, Lett. Org. Chem., 2014, 11, 350–355.
19 J. K. Joseph, S. L. Jain and B. Sain, J. Mol. Catal. A: Chem.,
2007, 267, 108–111.
20 E. Choi, C. Lee, Y. Na and S. Chang, Org. Lett., 2002, 4, 2369–
2371.
ZnBr2 supported on MNPs-Fe3O4 coated by SiO2 was developed
as an effective and recoverable catalyst for the synthesis of DPC
from CO2 and phenol in the presence of CCl4. It was found that
the catalytic performance of Fe3O4@SiO2–zinc halides was
dependent on the kind of zinc halides. Fe3O4@SiO2–ZnBr2
showed better catalytic performance than that of the hetero-
genized ZnCl2 and ZnI2 as well as homologous ZnBr2. Under the
optimized conditions, 28.1% of DPC yield was obtained using
Fe3O4@SiO2–ZnBr2 as the catalyst. The XPS result and the
activity comparison between simple mixing ZnBr2 with
Fe3O4@SiO2 and Fe3O4@SiO2–ZnBr2 revealed that there is a
possible interaction between Zn2+ and hydroxyl or surface oxide
species in support Fe3O4@SiO2. Fe3O4@SiO2–ZnBr2 can be
easily recovered by using an external magnet and reused
without signicant loss in activity for 4 runs. The yield of DPC
showed little change in the range 27.6–28.1%.
21 M. Gruber, S. Chouzier, K. Koehler and L. Djakovitch, Appl.
Catal., A, 2004, 265, 161–169.
´
´
´
22 R. Juarez, P. Concepcion, A. Corma and H. Garcıa, Chem.
Commun., 2010, 46, 4181–4183.
23 G. Z. Fan, C. J. Liao, T. Fang, M. Wang and G. S. Song, Fuel
Process. Technol., 2013, 116, 142–148.
`
24 J. L. Pellegatta, C. Blandy, V. Colliere, R. Choukroun,
B. Chaudret and P. Cheng, J. Mol. Catal. A: Chem., 2002,
178, 55–61.
25 B. Dam, S. Nandi and A. K. Pal, Tetrahedron Lett., 2014, 55,
5236–5240.
26 X. Zheng, S. Luo, L. Zhang and J. P. Cheng, Green Chem.,
2009, 11, 455–458.
Acknowledgements
27 J. Tharun, M. M. Dharman, Y. Hwang, R. Roshan, M. S. Park
and D. W. Park, Appl. Catal., A, 2012, 419, 178–184.
28 X. B. Lu, L. Shi, Y. M. Wang, R. Zhang, Y. J. Zhang, X. J. Peng
and B. Li, J. Am. Chem. Soc., 2006, 128, 1664–1674.
29 K. Kohno, J. C. Choi, Y. Ohshima, H. Yasuda and
T. Sakakura, ChemSusChem, 2008, 1, 186–188.
30 J. Gong, X. Ma and S. Wang, Appl. Catal., A, 2007, 316, 1–21.
31 I. Hatanaka, N. Mitsuyasu, G. Yin, Y. Fujiwara, T. Kitamura,
K. Kusakabe and T. Yamaji, J. Organomet. Chem., 2003, 674,
96–100.
The authors acknowledge the nancial support from the
Scientic Research Project from Hubei Provincial Department
of Education (no. D20141704; T201407) and the Hubei Provin-
cial Natural Science Foundation of China (no. 2014CFB890).
References
1 M. Tamura, M. Honda, Y. Nakagawa and K. Tomishige, J.
Chem. Technol. Biotechnol., 2014, 89, 19–33.
2 I. Omae, Catal. Today, 2006, 115, 33–52.
32 G. Z. Fan, S. I. Fujita, B. Zou, M. Nishiura, X. Meng and
M. Arai, Catal. Lett., 2009, 133, 280–287.
3 T. Sakakura and K. Kohno, Chem. Commun., 2009, 1312– 33 G. Z. Fan, H. T. Zhao, Z. X. Duan, T. Fang, M. H. Wan and
1330.
L. N. He, Catal. Sci. Technol., 2011, 1, 1138–1141.
4 G. Centi and S. Perathoner, Catal. Today, 2009, 148, 191–205.
56484 | RSC Adv., 2015, 5, 56478–56485
This journal is © The Royal Society of Chemistry 2015