Full Paper
[3] a) V. Chechik, R. M. Crooks, J. Am. Chem. Soc. 2000, 122, 1243; b) D.
Wang, D. Astruc, Chem. Soc. Rev. 2017, 46, 816–854.
dropwise, provoking the formation of purple (AuNP) color corre-
sponding to the reduction of the cation to the zero-valent metal
and AuNP-2 formation. The AuNP-2 were kept in aqueous solution
for characterization and used as the catalysts. Other TMNPs were
synthesized using the same method.
[4] a) K. S. Lokesh, A. Shambhulinga, N. Manjunatha, M. Imadadulla, M. Ho-
jamberdiev, Dyes Pigm. 2015, 120, 155–160; b) P. Mineo, A. Abbadessa,
A. Mazzaglia, A. Gulino, V. Villari, N. Micali, S. Millesi, C. Satriano, E. Scam-
porrino, Dyes Pigm. 2017, 141, 225–234; c) I. Fratoddi, C. Battocchio, G.
Polzonetti, F. Sciubba, M. Delfini, M. V. Russo, Eur. J. Inorg. Chem. 2011,
4906–4913.
[5] a) M. E. Alea-Reyes, J. Soriano, I. Mora-Espí, M. Rodrigues, D. A. Russell,
L. Barrios, L. Pérez-García, Colloids Surf. B 2017, 158, 602–609; b) J. Zeng,
W. Yang, D. Shi, X. Li, H. Zhang, M. Chen, ACS BioMater. Sci. Eng. 2018, 4,
963–972; c) O. J. Fakayode, S. P. Songca, O. S. Oluwafemi, Mater. Lett.
2017, 199, 37–40.
3. Catalysis of 4-Nitrophenol Reduction: An aqueous solution
(2.5 mL) containing 4-nitrophenol (0.09 mmol) and NaBH4 (9 mmol)
is prepared in a standard quartz cuvette (3 mL, path length: 1 cm).
The TMNPs catalyst (5 mol-%) is injected into this solution, and the
reaction progress is detected by UV/Vis. spectroscopic analysis
every min at 22 °C. (Figure S17–S30).
[6] B. Kaur, K. Malecka, D. A. Cristaldi, C. S. Chay, I. Mames, H. Radecka, J.
Radecki, E. Stulz, Chem. Commun. 2018, 54, 11108–11111.
[7] O. Lyutakov, O. Hejna, A. Solovyev, Y. Kalachyova, V. Svorcik, RSC Adv.
2014, 4, 50624–50630.
[8] N. C. M. Tam, P. Z. McVeigh, T. D. MacDonald, A. Farhadi, B. C. Wilson, G.
Zheng, Bioconjugate Chem. 2012, 23, 1726–1730.
4. Generation of Hydroxyl Radicals: An aqueous solution contain-
ing 3 mL of AgNPs (0.025 mmol/L) and 9 uL methylene blue
(2.5 mmol/L) is prepared in a standard quartz cuvette (3 mL, path
length: 1 cm). The H2O2 (0.1 eq –10 equiv.) is injected into this
solution, and the reaction progress is detected by UV/Vis. spectro-
scopic analysis every min at 22 °C. (Figure S31–S36).
[9] M. Drobizhev, Y. Stepanenko, A. Rebane, C. J. Wilson, T. E. O. Screen, H. L.
Anderson, J. Am. Chem. Soc. 2006, 128, 12432–12433.
[10] T. Hasobe, Phys. Chem. Chem. Phys. 2010, 12, 44–57.
Acknowledgments
[11] a) J. Yan, Y. Yang, M. Ishida, S. Mori, B. Zhang, Y. Feng, H. Furuta, Chem.
Eur. J. 2017, 23, 11375–11384; b) N. Zhang, J. Chen, K. Cheng, Y. Li, L.
Wang, K. Zheng, Q. Yang, D. Li, J. Yan, Res. Chem. Intermed. 2017, 43,
2921; c) Y. Li, J. Yan, K. Cheng, S. Kong, K. Zhang, L. Wang, N. Zhang, Res.
Chem. Intermed. 2017, 43, 5337; d) J. Yan, M. Takakusaki, Y. Yang, S. Mori,
B. Zhang, Y. Feng, M. Ishida, H. Furuta, Chem. Commun. 2014, 50, 14593–
14596; e) N. Zhang, B. Zhang, J. Yan, X. Xue, X. Peng, Y. Li, Y. Yang, C. Ju,
C. Fang, Y. Feng, Renewable Energy 2015, 77, 579–585; f) Y. J. Li, J. Yan,
S. Xiao, B. Zhang, F. Lu, K. Cheng, D. Li, Y. Feng, N. N. Zhang, Tetrahedron
Lett. 2016, 57, 3226–3230; g) X. Liu, J.-R. Hamon, Coord. Chem. Rev. 2019,
389, 94–118; h) T. T. Zhang, Y. J. Li, J. Yan, Y. Liang, B. B. Xu, K. B. Zheng,
N. N. Zhang, Tetrahedron 2018, 74, 2807–2811; i) Y. Zhou, J. Yan, N.
Zhang, D. Li, S. Xiao, K. Zheng, Sensor Actuat. B-Chem. 2018, 258, 156–
162; j) M. Li, K. Zheng, H. Chen, X. Liu, S. Xiao, J. Yan, X. Tan, N. Zhang,
Spectrochim. Acta Part A 2019, 217, 1–7.
[12] Z. Hou, W. Dehaen, J. Lyskawa, P. Woisel, R. Hoogenboom, Chem. Com-
mun. 2017, 53, 8423–8426.
[13] P. Zhao, X. Feng, D. Huang, G. Yang, D. Astruc, Coord. Chem. Rev. 2015,
287, 114–136.
[14] a) L. Wang, J. Zheng, Y. Li, S. Yang, C. Liu, Y. Xiao, J. Li, Z. Cao, R. Yang,
Anal. Chem. 2014, 86, 12348–12354; b) L.-Y. Duan, Y.-J. Wang, J.-W. Liu,
Y.-M. Wang, N. Li, J.-H. Jiang, Chem. Commun. 2018, 54, 8214–8217; c) H.
Jiang, Z. Chen, H. Cao, Y. Huang, Analyst 2012, 137, 5560–5564.
[15] S. Naraginti, F. B. Stephen, A. Radhakrishnan, A. Sivakumar, Spectrochim.
Acta A 2015, 135, 814–819.
Financial support from the National Natural Science Foundation
of China (Grant Nos. 21805166 and 21606145), the 111 Project
of Hubei Province (Grant No. 2018-19-1), the State Key Labora-
tory of Coordination Chemistry Foundation of Nanjing Uni-
versity (No. SKLCC1811), and China Three Gorges University is
gratefully acknowledged.
Keywords: Porphyrin · Nanoparticles · 4-Nitrophenol ·
Reduction · Radicals
[1] a) M. Sankar, N. Dimitratos, P. J. Miedziak, P. P. Wells, C. J. Kiely, G. J.
Hutchings, Chem. Soc. Rev. 2012, 41, 8099; b) X. Liu, D. Astruc, Adv. Mater.
2017, 29, 1605305; c) Y. Zhu, N. S. Hosmane, Coord. Chem. Rev. 2015,
293, 357; d) M.-C. Daniel, D. Astruc, Chem. Rev. 2004, 104, 293; e) X. Liu,
C. Manzur, N. Novoa, S. Celedon, D. Carrillo, J.-R. Hamon, Coord. Chem.
Rev. 2018, 357, 144–172; f) S. Cao, F. Tao, Y. Tang, Y. Li, J. Yu, Chem. Soc.
Rev. 2016, 45, 4747–4765.
[2] a) L. Liu, A. Corma, Chem. Rev. 2018, 118, 4981–5079; b) X. Liu, D. Astruc,
Adv. Synth. Catal. 2018, 360, 3426–3459; c) H. Kang, J. T. Buchman, R. S.
Rodriguez, H. L. Ring, J. He, K. C. Bantz, C. L. Haynes, Chem. Rev. 2019,
119, 664–699; d) X. Liu, D. Astruc, Coord. Chem. Rev. 2018, 359, 112–126;
e) J. J. Soldevila-Barreda, N. Metzler-Nolte, Chem. Rev. 2019, 119, 829–
869.
Received: February 14, 2019
Eur. J. Inorg. Chem. 0000, 0–0
5
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim