Journal of the American Chemical Society
Page 8 of 9
Formation of Silacycloprop-3-ene. Angew. Chem. Int. Ed. 2008, 47,
Base-Stabilized Silylenes: A Theoretical Insight. Chem. - Eur. J.
2018, 24, 11377-11385.
(9) Leszczynska, K.; Mix, A.; Berger, R. J. F.; Rummel, B.;
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
3250-3253. (g) Xiong, Y.; Yao, S.; Driess, M. Reactivity of a
Zwitterionic Stable Silylene toward Halosilanes and Haloalkanes.
Organometallics 2009, 28, 1927-1933. (h) Xiong, Y.; Yao, S.; Driess,
M. An Isolable NHC-Supported Silanone. J. Am. Chem. Soc. 2009,
Neumann,
B.;
Stammler,
H.-G.;
Jutzi,
P.
The
Pentamethylcyclopentadienylsilicon(II) Cation as a Catalyst for
the Specific Degradation of Oligo(ethyleneglycol) Diethers.
Angew. Chem., Int. Ed. 2011, 50, 6843 - 6846.
(10) Li, Y.; Chan, Y.-C.; Leong, B.-X.; Li, Y.; Richards, E.;
Purushothaman, I.; De, S.; Parameswaran, P.; So, C.-W. Trapping
a Silicon(I) Radical with Carbenes: A Cationic cAAC-Silicon(I)
Radical and an NHC-Parent-Silyliumylidene Cation. Angew.
Chem., Int. Ed. 2017, 56, 7573-7578.
1
31, 7562-7563. (i) Xiong, Y.; Yao, S.; Müller, R.; Kaupp, M.; Driess,
M. From Silicon(II)-Based Dioxygen Activation to Adducts of
Elusive Dioxasiliranes and Sila-ureas Stable at Room
Temperature. Nat. Chem. 2010, 2, 577. (j) Xiong, Y.; Yao, S.; Driess,
M. Unusual [3+1] Cycloaddition of a Stable Silylene with a 2,3-
Diazabuta-1,3-diene versus [4+1] Cycloaddition toward a Buta-1,3-
diene. Organometallics 2010, 29, 987-990. (k) Meltzer, A.; Inoue,
S.; Präsang, C.; Driess, M. Steering S−H and N−H Bond Activation
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
(11) Mukherjee, D.; Osseili, H.; Spaniol, T. P.; Okuda, J. Alkali
by a Stable N-Heterocyclic Silylene: Different Addition of H
NH , and Organoamines on a Silicon(II) Ligand versus Its
Si(II)→Ni(CO) Complex. J. Am. Chem. Soc. 2010, 132, 3038-3046.
(l) Präsang, C.; Stoelzel, M.; Inoue, S.; Meltzer, A.; Driess, M.
Metal-Free Activation of EH (E=P, As) by an Ylide-like Silylene
and Formation of a Donor-Stabilized Arsasilene with a HSi=AsH
Subunit. Angew. Chem. Int. Ed. 2010, 49, 10002-10005. (m) Asay,
M.; Jones, C.; Driess, M. N-Heterocyclic Carbene Analogues with
Low-Valent Group 13 and Group 14 Elements: Syntheses,
Structures, and Reactivities of a New Generation of Multitalented
Ligands. Chem. Rev. 2011, 111, 354-396. (n) Yao, S.; Xiong, Y.; Driess,
M. Zwitterionic and Donor-Stabilized N-Heterocyclic Silylenes
2
S,
Metal Hydridotriphenylborates [(L)M][HBPh
3
] (M = Li, Na, K):
2
Chemoselective Catalysts for Carbonyl and CO Hydroboration. J.
3
3
Am. Chem. Soc. 2016, 138, 10790-10793.
(12) Shintani, R.; Nozaki, K. Copper-catalyzed Hydroboration of
Carbon Dioxide. Organometallics 2013, 32, 2459-2462.
3
(13) Suh, H.-W.; Guard, L. M.; Hazari, N. A Mechanistic Study
of Allene Carboxylation with CO
of a Pd(II) Pincer Complex for the Catalytic Hydroboration of
CO . Chem. Sci. 2014, 5, 3859-3872.
2
Resulting in the Development
2
(14) (a) Abdalla, J. A. B.; Riddlestone, I. M.; Tirfoin, R.; Aldridge,
S. Cooperative Bond Activation and Catalytic Reduction of
Carbon Dioxide at a Group 13 Metal Center. Angew. Chem., Int.
Ed. 2015, 54, 5098-5102. (b) Anker, M. D.; Arrowsmith, M.;
Bellham, P.; Hill, M. S.; Kociok-Koehn, G.; Liptrot, D. J.; Mahon,
(
NHSis) for Metal-Free Activation of Small Molecules.
Organometallics 2011, 30, 1748-1767. (o) Blom, B.; Stoelzel, M.;
Driess, M. New Vistas in N-Heterocyclic Silylene (NHSi)
Transition-Metal Coordination Chemistry: Syntheses, Structures
and Reactivity towards Activation of Small Molecules. Chem. –
M. F.; Weetman, C. Selective Reduction of CO
2
to a Methanol
Equivalent by B(C -Activated Alkaline Earth Catalysis. Chem.
6 5 3
F )
Sci. 2014, 5, 2826-2830. (c) Chong, C. C.; Kinjo, R. Catalytic
Hydroboration of Carbonyl Derivatives, Imines, and Carbon
Dioxide. ACS Catal. 2015, 5, 3238-3259.
(15) Inoue, S.; Eisenhut, C. A Dihydrodisilene Transition Metal
Complex from an N-Heterocyclic Carbene-Stabilized Silylene
Monohydride. J. Am. Chem. Soc. 2013, 135, 18315-18318.
(16) Nakajima, K.; Kato, T.; Nishibayashi, Y. Hydroboration of
Alkynes Catalyzed by Pyrrolide-Based PNP Pincer-Iron
Complexes. Org. Lett. 2017, 19, 4323-4326.
(17) Fan, X.; Zheng, J.; Li, Z. H.; Wang, H. Organoborane
Catalyzed Regioselective 1,4-Hydroboration of Pyridines. J. Am.
Chem. Soc. 2015, 137, 4916-4919.
(18) Rao, B.; Chong, C. C.; Kinjo, R. Metal-Free Regio- and
Chemoselective Hydroboration of Pyridines Catalyzed by 1,3,2-
Diazaphosphenium Triflate. J. Am. Chem. Soc. 2018, 140, 652-656.
(19) (a) DFT studies (M06-2X/def2-TZVP) show that the
Eur. J. 2013, 19, 40-62. (p) Kostenko, A.; Driess, M. Geometrically
II
Compelled Disilene with λ
4
-Coordinate Si Atoms. J. Am. Chem.
Soc. 2018, 140, 16962-16966. (q) Wang, Y.; Kostenko, A.;
Hadlington, T. J.; Luecke, M.-P.; Yao, S.; Driess, M. Silicon-
Mediated Selective Homo- and Heterocoupling of Carbon
Monoxide. J. Am. Chem. Soc. 2019, 141, 626-634.
(
6) (a) Ahmad, S. U.; Szilvási, T.; Irran, E.; Inoue, S. An NHC-
Stabilized Silicon Analogue of Acylium Ion: Synthesis, Structure,
Reactivity, and Theoretical Studies. J. Am. Chem. Soc. 2015, 137,
5
828-5836. (b) Ahmad, S. U.; Szilvási, T.; Inoue, S. A Facile Access
to Novel NHC-Stabilized Silyliumylidene Ion and C-H
Activation of Phenylacetylene. Chem. Commun. 2014, 50, 12619-
2622.
7) (a) Rodriguez, R.; Gau, D.; Kato, T.; Saffon-Merceron, N.; De
a
1
(
Cozar, A.; Cossio, F. P.; Baceiredo, A. Reversible Binding of
Ethylene to Silylene-Phosphine Complexes at Room
Temperature. Angew. Chem., Int. Ed. 2011, 50, 10414-10416. (b)
Rodriguez, R.; Gau, D.; Contie, Y.; Kato, T.; Saffon-Merceron, N.;
Baceiredo, A. Synthesis of a Phosphine-Stabilized Silicon(II)
2
insertion of CO into the Si–H bond of 1 is not possible. (b)
Complex 1 was treated with aldehyde PhC(O)H in C
6
D
6
, whereby
1
the H NMR spectroscopy did not show any signal for –CH
2
O
moiety, indicating that PhC(O)H did not insert into the Si–H
bond in 1 during the catalysis. DFT studies show that the
insertion of PhC(O)H into the Si–H bond in 1 is not favorable (G
Hydride and Its Addition to Olefins:
Hydrosilylation Reaction. Angew. Chem., Int. Ed. 2011, 50, 11492-
1495. (c) Rodriguez, R.; Contie, Y.; Mao, Y.; Saffon-Merceron, N.;
A
Catalyst-Free
‡
1
= 48.4 kcal/mol, M06-2X/def2-SVP). It is suggested that the
catalysis should proceed through the activation of PhC(O)H by
the Si lone pair electrons in 1, followed by reacting with HBpin.
(20) Bertuzzi, G.; Bernardi, L.; Fochi, M., Nucleophilic
Dearomatization of Activated Pyridines. Catalysts 2018, 8, 632.
(21) 0.1 mol% of IMe cannot mediate the hydroboration of
ketone compounds and pyridine derivatives with HBpin in C D
Baceiredo, A.; Branchadell, V.; Kato, T. Reversible Dimerization of
Phosphine-Stabilized Silylenes by Silylene Insertion into Si -H
and Si -Cl σ-Bonds at Room Temperature. Angew. Chem., Int. Ed.
II
II
2
015, 54, 15276-15279. (d) Rodriguez, R.; Contie, Y.; Nougue, R.;
Baceiredo, A.; Saffon-Merceron, N.; Sotiropoulos, J.-M.; Kato, T.
Reversible Silylene Insertion Reactions into Si-H and P-H σ-Bonds
at Room Temperature. Angew. Chem., Int. Ed. 2016, 55, 14355-
6
6
o
at 90 C for 6 h.
1
4358.
(8) Nakagaki, M.; Baceiredo, A.; Kato, T.; Sakaki, S. Reversible
Oxidative Addition/Reductive Elimination of a Si-H Bond with
ACS Paragon Plus Environment