Published on Web 06/09/2006
Structural Factors Controlling the Self-Assembly of Columnar
Liquid Crystals
E. Johan Foster, R. Bradley Jones, Christine Lavigueur, and Vance E. Williams*
Contribution from the Department of Chemistry, Simon Fraser UniVersity, 8888 UniVersity
DriVe, Burnaby, British Columbia, Canada V5A 1S6
Received February 23, 2006; E-mail: vancew@sfu.ca
Abstract: A series of disc-shaped molecules were prepared by the condensation of 1,2-diamines with
2,3,6,7-tetrakis(hexyloxy)phenanthrene-9,10-dione to investigate the relationship between changes in
molecular structure and the self-assembly of columnar liquid crystalline phases. A comparison of compounds
with different core sizes indicated that molecules with larger aromatic cores had a greater propensity to
form columnar phases, as did compounds substituted with electron-withdrawing groups. In contrast,
molecules with electron-donating substituents were nonmesogenic. The clearing temperature of columnar
phases increased linearly with the electron-withdrawing ability of the substituents, as quantified by Hammett
σ-values. The observed trends can be rationalized in terms of the strength of π-π interactions between
aromatic cores in the liquid crystalline phases and suggest that both electrostatic interactions and dispersion
forces play important roles in the self-assembly of these materials.
Introduction
nanostructures represents a striking example of self-assembly
driven largely by π-π interactions. Any factor that alters the
Columnar liquid crystals have emerged as a promising class
of materials for light-emitting diodes,1 photovoltaic devices,2
and field effect transistors.3 These liquid crystals exhibit a host
of attractive properties, including high charge carrier mobilities,4
a lack of grain boundaries, and the potential to be uniformly
aligned.3,5-10 In addition to their practical importance, the ability
of disc-shaped molecules to spontaneously form columnar
strength of π-stacking between neighboring molecules should
therefore have a dramatic impact on the propensity of these
molecules to form columnar mesophases. Studying the relation-
ship between a molecule’s structure and its tendency to self-
assemble into columns can therefore provide valuable insight
into the nature and strength of noncovalent interactions between
discotic mesogens, in addition to facilitating the design of new
liquid crystalline materials.
Despite the large number of discotic mesogens that have been
prepared in the thirty years since their discovery, only a few
studies have attempted to relate phase behavior to factors such
as core size11-14 or substituents effects.15-20 Most series of
substituted discotic mesogens examined to date have been
(1) Freudenmann, R.; Behnisch, B.; Hanack, M. J. Mater. Chem. 2001, 11,
1618.
(2) Schmidt-Mende, L.; Fechtenkotter, A.; Mu¨llen, K.; Moons, E.; Friend, R.
H.; MacKenzie, J. D. Science 2001, 293, 1119.
(3) Van de Craats, A. M.; Stutzmann, N.; Bunk, O.; Nielsen, M. M.; Watson,
M.; Mu¨llen, K.; Chanzy, H. D.; Sirringhaus, H.; Friend, R. H. AdV. Mater.
2003, 15, 495.
(4) (a) Warman, J. M.; Van de Craats, A. M. Mol. Cryst. Liq. Cryst. 2003,
396, 41. (b) Van de Craats, A. M.; Warman, J. M. AdV. Mater. 2001, 13,
130. (c) Van de Craats, A. M.; Warman, J. M.; Mu¨llen, K.; Geerts, Y.;
Brand, J. D. AdV. Mater. 1998, 10, 36. (d) Van de Craats, A. M.; Warman,
J. M.; Fechtenkoetter, A.; Brand, J. D.; Harbison, M. A.; Mu¨llen, K. AdV.
Mater. 1999, 11, 1469. (e) Struijk, C. W.; Sieval, A. B.; Dakhorst, J. E.;
Van Dijk, M.; Kimkes, P.; Koehorst, R. B.; Donker, H.; Schaafsma, T. J.;
Picken, S. J.; Van de Craats, A. M.; Warman, J. M.; Zuilhof, H.; Sudholter,
E. J. R. J. Am. Chem. Soc. 2000, 122, 11057.
(5) (a) Vauchier, C.; Zann, A.; Lebarny, P.; Dubois, J. C.; Billard, J. Mol.
Cryst. Liq. Cryst. 1981, 66, 423. (b) Eichhorn, S. H.; Adavelli, A.; Li, H.
S.; Fox, N. Mol. Cryst. Liq. Cryst. 2003, 397, 347. (c) Hatsusaka, K.; Ohta,
K.; Yamamoto, I.; Shirai, H. J. Mater. Chem. 2001, 11, 423. (d)
Shklyarevskiy, I. O.; Jonkheijm, P.; Stutzmann, N.; Wasserberg, D.;
Wondergem, H. J.; Christianen, P. C. M.; Schenning, A.; de Leeuw, D.
M.; Tomovic, Z.; Wu, J. S.; Mu¨llen, K.; Maan, J. C. J. Am. Chem. Soc.
2005, 127, 16233. (e) Terasawa, N.; Monobe, H.; Kiyohara, K.; Shimizu,
Y. Chem. Commun. 2003, 1678.
(6) (a) Monobe, H.; Terasawa, N.; Kiyohara, K.; Shimizu, Y.; Azehara, H.;
Nakasa, A.; Fujihira, M. Mol. Cryst. Liq. Cryst. 2004, 412, 1839. (b)
Zimmermann, S.; Wendorff, J. H.; Weder, C. Chem. Mater. 2002, 14, 2218.
(7) Tracz, A.; Jeszka, J. K.; Watson, M. D.; Pisula, W.; Mu¨llen, K.; Pakula,
T. J. Am. Chem. Soc. 2003, 125, 1682.
(8) (a) Pisula, W.; Menon, A.; Stepputat, M.; Lieberwirth, I.; Kolb, U.; Tracz,
A.; Sirringhaus, H.; Pakula, T.; Mu¨llen, K. AdV. Mater. 2005, 17, 684. (b)
Pisula, W.; Tomovic, Z.; El Hamaoui, B.; Watson, M. D.; Pakula, T.;
Mu¨llen, K. AdV. Funct. Mater. 2005, 15, 893. (c) Pisula, W.; Tomovic, Z.;
Stepputat, M.; Kolb, U.; Pakula, T.; Mu¨llen, K. Chem. Mater. 2005, 17,
2641.
(9) Piris, J.; Debije, M. G.; Stutzmann, N.; Laursen, B. W.; Pisula, W.; Watson,
M. D.; Bjornholm, T.; Mu¨llen, K.; Warman, J. M. AdV. Func. Mater. 2004,
14, 1053.
(10) (a) Bunk, O.; Nielsen, M. M.; Solling, T. I.; Van de Craats, A. M.;
Stutzmann, N. J. Am. Chem. Soc. 2003, 125, 2252. (b) Laursen, B. W.;
Norgaard, K.; Reitzel, N.; Simonsen, J. B.; Nielsen, C. B.; Als-Nielsen, J.;
Bjornholm, T.; Solling, T. I.; Nielsen, M. M.; Bunk, O.; Kjaer, K.;
Tchebotareva, N.; Watson, M. D.; Mu¨llen, K.; Piris, J. Langmuir 2004,
20, 4139.
(11) Lau, K.; Foster, J.; Williams, V. Chem. Commun. 2003, 2172.
(12) Yatabe, T.; Harbison, M. A.; Brand, J. D.; Wagner, M.; Mu¨llen, K.; Samori,
P.; Rabe, J. J. Mater. Chem. 2000, 10, 1519.
(13) (a) Mu¨ller, G. R. J.; Meiners, C.; Enkelmann, V.; Geerts, Y.; Mu¨llen, K.
J. Mater. Chem. 1998, 8, 61. (b) Van de Craats, A. M.; Warman, J. M.
AdV. Mater. 2001, 13, 130. (c) Pisula, W.; Tomovic, Z.; Simpson, C.;
Kastler, M.; Pakula, T.; Mu¨llen, K. Chem. Mater. 2005, 17, 4296.
(14) (a) Msayib, K.; Mahkseed, S.; McKeown, N. B. J. Mater. Chem. 2001,
11, 2784. (b) Boden, N.; Bushby, R. J.; Headdock, G.; Lozman, O. R.;
Wood, A. Liq. Cryst. 2001, 28, 139.
(15) For recent reviews of structure property relationships of discotic mesogens
see: (a) Cammidge, A. N.; Bushby, R. J. In Handbook of Liquid Crystals;
Demus, D., Goodby, J., Gray, G. W., Spiess, H.-W., Vill, V., Eds.; Wiley-
VCH: New York, 1998; Vol. 2B, p 693. (b) Kumar, S. Liq. Cryst. 2004,
31, 1037.
(16) (a) Rose, B.; Meier, H. Z. Naturforsch. B: Chem. Sci. 1998, 53, 1031. (b)
Cammidge, A. N.; Gopee, H. Chem. Commun. 2002, 966.
9
10.1021/ja0613198 CCC: $33.50 © 2006 American Chemical Society
J. AM. CHEM. SOC. 2006, 128, 8569-8574
8569