ChemComm
Communication
Table 3 Selective a,b-hydrogenation of carbonyl compounds
Conflicts of interest
Subst.
T (1C)
Conv. (%)
Sel. (%)
83
There are no conflicts to declare.
15
150
499
References
1 K. Yan, G. Wu, T. Lafleur and C. Jarvis, Renewable Sustainable Energy
Rev., 2014, 38, 663–676.
2 H. U. Blaser, C. Malan, B. Pugin, F. Spindler, H. Steiner and M. Studer,
Adv. Synth. Catal., 2003, 345, 103–151.
3 H.-U. Blaser, A. Indolese, A. Schnyder, H. Steiner and M. Studer,
J. Mol. Catal. A: Chem., 2001, 173, 3–18.
16
17
150
150
499
499
90
499
4 J. G. V. Alsten, M. L. Jorgensen and D. J. am Ende, Org. Process Res.
Dev., 2009, 13, 629–633.
5 P. Clark, M. Poliakoff and A. Wells, Adv. Synth. Catal., 2007, 349,
2655–2659.
6 M. Rothe, Food, 1986, 30, 228.
7 N. Mamidi, S. Gorai, J. Sahoo and D. Manna, Chem. Phys. Lipids,
2012, 165, 320–330.
8 K. Nuithitikul and M. Winterbottom, Catal. Today, 2007, 128, 74–79.
9 J. M. Grosselin, C. Mercier, G. Allmang and F. Grass, Organometallics,
1991, 10, 2126–2133.
18
19
20
150
150
150
499
499
88
499
499
499
10 S. Sakaguchi, T. Yamaga and Y. Ishii, J. Org. Chem., 2001, 66, 4710–4712.
21
150
100
100
499
499
10
o1
84
ˇ
11 C. Bianchini, M. Peruzzini, E. Farnetti, J. Kaspar and M. Graziani,
J. Organomet. Chem., 1995, 488, 91–97.
12 E. Keinan and N. Greenspoon, J. Am. Chem. Soc., 1986, 108, 7314–7325.
13 B. Ding, Z. Zhang, Y. Liu, M. Sugiya, T. Imamoto and W. Zhang,
Org. Lett., 2013, 15, 3690–3693.
14 Z. Poltarzewski, S. Galvagno, R. Pietropaolo and P. Staiti, J. Catal.,
1986, 102, 190–198.
22
23a
o1
15 T. Ohta, T. Miyake, N. Seido, H. Kumobayashi, S. Akutagawa and
H. Takaya, Tetrahedron Lett., 1992, 33, 635–638.
16 M. D. Bhor, A. G. Panda, S. R. Jagtap and B. M. Bhanage, Catal. Lett.,
2008, 124, 157–164.
24
100
17 W. S. Mahoney, D. M. Brestensky and J. M. Stryker, J. Am. Chem. Soc.,
1988, 110, 291–293.
¨
18 I. Vural Gu¨rsel, T. Noel, Q. Wang and V. Hessel, Green Chem., 2015,
17, 2012–2026.
19 S. S. Mohire and G. D. Yadav, Ind. Eng. Chem. Res., 2018, 57,
9083–9093.
20 N. A. Cortese and R. F. Heck, J. Org. Chem., 1978, 43, 3985–3987.
21 J. A. Anderson, J. Mellor and R. P. K. Wells, J. Catal., 2009, 261,
208–216.
a
Reaction path of a-angelica lactone.
´
22 A. Borodzinski and G. C. Bond, Catal. Rev., 2006, 48, 91–144.
species in solution. In addition, no copper (o0.01% wt) is detected
in solution according to elemental analysis, consistent with the
23 S. Recchia, C. Dossi, N. Poli, A. Fusi, L. Sordelli and R. Psaro,
J. Catal., 1999, 184, 1–4.
absence of leaching (see ESI† for details). Finally, TEM carried out 24 C. W. A. Chan, A. H. Mahadi, M. M.-J. Li, E. C. Corbos, C. Tang,
G. Jones, W. C. H. Kuo, J. Cookson, C. M. Brown, P. T. Bishop and
after the catalytic tests shows small and narrow copper particles of
S. C. E. Tsang, Nat. Commun., 2014, 5, 5787.
3.2 Æ 0.6 nm identical to the fresh catalyst, suggesting that the loss
25 H. Adkins and R. Connor, J. Am. Chem. Soc., 1931, 53, 1091–1095.
of activity may be due to poisoning of the surface site upon cycling. 26 J. M. Thomas, Angew. Chem., Int. Ed., 2009, 48, 3390–3391.
´
27 C. Coperet, A. Comas-Vives, M. P. Conley, D. P. Estes, A. Fedorov,
We have shown that silica-supported Cu nanoparticles efficiently
hydrogenate the olefin moiety in a large group of a,b-conjugated
˜
V. Mougel, H. Nagae, F. Nu´nez-Zarur and P. A. Zhizhko, Chem. Rev.,
2016, 116, 323–421.
´
carbonyl compounds. Most of the 24 selected representative 28 A. Fedorov, H.-J. Liu, H.-K. Lo and C. Coperet, J. Am. Chem. Soc.,
2016, 138, 16502–16507.
29 K. Searles, K. W. Chan, J. A. Mendes Burak, D. Zemlyanov, O. Safonova
substrates including unsaturated esters, aldehydes, ketones,
and amides, were completely converted to their corresponding
´
and C. Coperet, J. Am. Chem. Soc., 2018, 140, 11674–11679.
´
saturated products with good selectivity, typically 499%, the 30 N. Kaeffer, K. Larmier, A. Fedorov and C. Coperet, J. Catal., 2018,
364, 437–445.
carbonyl moiety remaining untouched in most instances. It is
noteworthy that this stable and inexpensive catalyst used under
31 A. M. Raspolli Galletti, C. Antonetti, M. Bertoldo and F. Piccinelli,
Appl. Catal., A, 2013, 468, 95–101.
mild reaction conditions achieves catalytic performances com- 32 S.-D. Yang, C.-L. Sun, Z. Fang, B.-J. Li, Y.-Z. Li and Z.-J. Shi, Angew.
Chem., Int. Ed., 2008, 47, 1473–1476.
33 A. C. Brown and J. Gibson, J. Chem. Soc., Trans., 1892, 61, 367–369.
34 M. Mascal, S. Dutta and I. Gandarias, Angew. Chem., Int. Ed., 2014,
parable to those of conventional homogeneous or hetero-
geneous catalysts based on noble metals.
We thank Dr Kim Larmier for his help in catalyst preparation.
53, 1854–1857.
This journal is ©The Royal Society of Chemistry 2019
Chem. Commun., 2019, 55, 179--181 | 181