E. Gianotti, U. Diaz, A. Velty, A. Corma
FULL PAPER
ture under a N
2
atmosphere. Then, 1 to 10 mmol-% of TMGN or
[12] T. Saupe, C. Krieger, H. A. Staab, Angew. Chem. 1986, 98, 460;
Angew. Chem. Int. Ed. Engl. 1986, 25, 451–453.
DMAN, present in a silica network, with respect to the methylene
compound was added and the reaction started. Ethyl cyanoacetate
[
13] M. A. Zirnstein, H. A. Staab, Angew. Chem. 1987, 99, 460; An-
gew. Chem. Int. Ed. Engl. 1987, 26, 460–461.
(
ECA), ethyl acetoacetate (EAA), and diethyl malonate (DEM)
have been used and the reaction temperatures were 333 K for ECA,
53 K for EAA, and 383 K for DEM. Ethanol and toluene were
[
[
14] A. F. Pozharskii, Russ. Chem. Rev. 1998, 67, 1–24.
15] V. Raab, E. Gauchenova, A. Merkoulov, K. Harms, J. Sun-
dermeyer, B. Kova cˇ evi c´ , Z. B. Maksi c´ , J. Am. Chem. Soc. 2005,
3
used as solvents.
127, 15738–15743.
[
[
16] S. A. Reiter, S. D. Nogai, K. Karaghiosoff, H. Schmidbaur, J.
For the Henry reaction, a solvent free mixture of benzaldehyde
Am. Chem. Soc. 2004, 126, 15833–15843.
(5 mmol) and nitromethane (20 mmol) was stirred at 363 K under
17] V. A. Ozeryanskii, A. F. Pozharskii, A. J. Bienko, W. Sawka-
Dobrowolska, L. Sobczyk, J. Phys. Chem. A 2005, 109, 1637–
a N atmosphere. Then 10 mmol-% of TMGN or DMAN within
2
the silica network, with respect to the benzaldehyde, was added
and the reaction started. For the Claisen–Schmidt condensation, a
mixture of benzaldehyde (12 mmol) and acetophenone (10 mmol)
1642.
[
18] V. Raab, J. Kipke, R. M. Gschwind, J. Sundermeyer, Chem.
Eur. J. 2002, 8, 1682–1693.
19] B. Kova cˇ evi c´ , Z. B. Maksi c´ , R. Vianello, M. Primorac, New J.
Chem. 2002, 26, 1329–1334.
2
was stirred at 403 K under a N atmosphere, an excess of acetophe-
[
none (1 mL) was used as the solvent. Then 10 mmol-% of TMGN
or DMAN with respect to the benzaldehyde was added and the
reaction started.
[20] V. Raab, K. Harms, J. Sundermeyer, B. Kova cˇ evi c´ , Z. B.
Maksi c´ , J. Org. Chem. 2003, 68, 8790–8797.
[
[
21] B. Kova cˇ evi c´ , Z. B. Maksi c´ , Chem. Eur. J. 2002, 8, 1694–1702.
22] P. Przybylski, B. Gierczyk, G. Schroeder, G. Zundel, B. Brzez-
inski, F. Bartl, J. Mol. Struct. 2007, 844–845, 157–165.
23] D. Margertic, in: Superbases for organic synthesis (Ed.: T. Ishi-
kawa), Wiley-VCH, 2009, pp. 10–48.
Samples were taken periodically, and the evolution of the reaction
was followed by GC and GC–MS, equipped with an Equity-5 col-
umn (30 mϫ0.25ϫ0.25 μm) and a FID as detector. For catalyst
recycling studies, the solid was filtered and thoroughly washed with
[
CH
2
Cl
2
after each run and then outgassed at 373 K for 12 h to
[24] H. U. Wüstefeld, W. C. Kaska, F. Schüth, G. D. Stucky, X. Bu,
B. Krebs, Angew. Chem. 2001, 113, 3280; Angew. Chem. Int.
Ed. 2001, 40, 3182–3184.
remove the adsorbed species. In all experiments, nitrobenzene was
used as the internal standard.
[25] U. Wild, O. Hübner, A. Maronna, M. Enders, E. Kaifer, H.
Supporting Information (see footnote on the first page of this arti-
Wadepohl, H.-J. Himmel, Eur. J. Inorg. Chem. 2008, 4440–
cle): Synthesis route followed to obtain silyl-TMGN derivative is
4447.
1
13
29
shown in Scheme S1. Figures S1–S4 show H, C and Si NMR
spectra of pure and functionalized proton sponges. In Figure S5,
FTIR spectra of the hybrids are shown. Morphology of TMGN/
[26] E. J. A. Pope, J. D. Mackenzie, J. Non-Cryst. Solids 1986, 87,
185–198.
[27] R. Winter, J. B. Chan, R. Frattini, J. Jonas, J. Non-Cryst. Solids
2
SiO samples is detailed from TEM micrographs in Figure S6. Fig-
1988, 105, 214–222.
[
[
[
[
[
[
[
28] E. Reale, A. Leyva, A. Corma, C. Martinez, H. Garcia, F. Rey,
J. Mater. Chem. 2005, 15, 1742–1754.
29] U. Diaz, T. Garcia, A. Velty, A. Corma, J. Mater. Chem. 2009,
ure S7 shows the yields obtained for Knoevenagel condensation of
benzaldeyde with ECA using 0.5 mmol-% of proton sponges in the
silica, and Figure S8 shows the yields of byproducts and benzalde-
hyde conversions of the homogeneous TMGN and DMAN proton
sponges for Henry reaction.
19, 5970–5979.
30] Y. Xia, Z. Y. Yang, K. F. Bastow, Y. Nakanishi, K. H. Lee, Bi-
oorg. Med. Chem. Lett. 2000, 10, 699–701.
31] H. K. Hsied, L. T. Tsao, J. P. Wang, C. N. Lin, J. Pharm. Phar-
macol. 2000, 52, 163–171.
32] M. Satyanarayana, P. Tiwari, B. K. Tripathi, A. K. Srivastava,
R. Pratap, Bioorg. Med. Chem. 2004, 12, 883–889.
33] H. Qian, D. Liu, C. Lv, Ind. Eng. Chem. Res. 2011, 50, 1146–
Acknowledgments
The authors thank the Spanish Government by Consolider – In-
genio 2010 MULTICAT (number CSD2009-00050) and MAT2011
1149.
(number 29020-C02-01) projects. E. G. is grateful for the financial
34] Y. Seo, S. Park, D. H. Park, J. Solid State Chem. 2006, 179,
support from the Marie Curie Fellowship (grant number FP7-PEO-
PLE-2009-IEF).
1285–1288.
[35] K. Kawahara, Y. Hagiwara, A. Shimojima, K. Kuroda, J. Ma-
ter. Chem. 2008, 18, 3193–3195.
36] M. J. Climent, A. Corma, S. Iborra, K. Epping, A. Velty, J.
[
[
[
[
[
1] A. P. Wight, M. E. Davis, Chem. Rev. 2002, 102, 3589–3614.
2] F. Bigi, S. Carloni, R. Maggi, R. Mazzacani, G. Sartori, Stud.
Surf. Sci. Catal. 2000, 130, 3501–3506.
Catal. 2004, 225, 316–326.
37] I. Rodriguez, G. Sastre, A. Corma, S. Iborra, J. Catal. 1999,
183, 14–23.
[
[
3] S. Cheng, X. Wang, S.-Y. Chen, Top. Catal. 2009, 52, 681–687.
4] I. Rodriguez, S. Iborra, A. Corma, F. Rey, J. L. Jordá, Chem.
Commun. 1999, 593–594.
38] F. S. Prout, U. D. Beaucaire, G. R. Dyrkarcz, W. M. Koppes,
R. E. Kuznicki, T. A. Marlewski, J. A. Pienkowski, J. M. Puda,
J. Org. Chem. 1973, 38, 1512–1517.
[
[
[
[
5] I. Rodriguez, S. Iborra, F. Rey, A. Corma, Appl. Catal. A 2000,
[
[
[
39] G. Jones, Org. React. 1967, 15, 204–599.
194–195, 241–252.
40] J. Guyot, A. Kergomard, Tetrahedron 1983, 39, 1161–1166.
41] A. Corma, S. Iborra, I. Rodriguez, F. Sanchez, J. Catal. 2002,
6] A. C. Blanc, D. J. Macquarrie, S. Valle, G. Renard, C. R.
Quinn, D. Brunel, Green Chem. 2000, 2, 283–288.
211, 208–215.
7] E. Gianotti, U. Diaz, S. Coluccia, A. Corma, Phys. Chem.
Chem. Phys. 2011, 13, 11702–11709.
[
[
42] F. A. Luzzio, Tetrahedron 2001, 57, 915–945.
43] G. Sartori, F. Bigi, R. Maggi, R. Sartorio, D. J. Macquarrie,
M. Leonardo, L. Storaro, S. Coluccia, G. Martra, J. Catal.
2004, 222, 410–418.
8] R. W. Alder, P. S. Bowman, W. R. Steele, D. R. Winterman, J.
Chem. Soc., Chem. Commun. 1968, 723–724.
[
[
9] R. W. Alder, Chem. Rev. 1989, 89, 1215–1223.
10] H. A. Staab, T. Saupe, C. Krieger, Angew. Chem. 1983, 95, 748;
Angew. Chem. Int. Ed. Engl. 1983, 22, 731–732.
[44] M. J. Climent, A. Corma, S. Iborra, Chem. Rev. 2011, 111,
1072–1133.
[
11] H. A. Staab, M. Höne, C. Krieger, Tetrahedron Lett. 1988, 29,
[45] T. Hara, S. Kanai, K. Mori, T. Mizugaki, K. Ebitani, J. Jitsu-
kawa, K. Kaneda, J. Org. Chem. 2006, 71, 7455–7462.
1905–1908.
5184
www.eurjic.org
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2012, 5175–5185