F. Saliu et al. / Tetrahedron Letters 53 (2012) 3590–3593
22. Dombek, D. B.; Leung, T. W. Chem. Commun. 1992, 205–206.
3593
Finally, the results showed in Table 2 suggest that thermody-
namic basicity is not the sole criterion for predicting the promoting
activity. In fact, it is well reported that TBD could act as a bifunc-
tional nucleophilic catalyst38,39 in the activation of carbonyl
groups. This could be the reason of the minor reactivity observed
by using other bicyclic organic bases.
The use of TBD as a promoter in the oxidative carbonylation of
amine under bis(salicylaldehyde)ethylenediimine-cobalt(II) cataly-
sis was demonstrated to be beneficial and could represent an inter-
esting development in the field of the Co–Schiff base complexes
catalyzed oxidative carbonylation, because bicyclic guanidine bases
are less toxic and more environmentally friendly than pyridine-
bases.
23. Experimental section: Amines were commercial grade reagents purchased
from Aldrich. Solvents were solvent grade from Fluka. The catalyst N,N-
bis(salicylidene)ethylenediaminocobalt(II)
commercial product (Aldrich Inc.). The reactions were carried out in a 100-
mL stainless steel autoclave equipped with mechanical stirrer and an
hydrate
(Cosalen)
was
a
a
automatic temperature controller. Carbon monoxide and dioxygen were high
purity grade. GC–MS analyses were performed with a Hewlett Packard 5890A
instrument, (split/splitless injector, capillary column SPB-5, 30 m, 0.32 mm
I.D.) equipped with a 5971A Mass Selective Detector. 1H NMR spectra were
recorded on a Varian Mercury 400 instrument in CDCl3 . Chemical shifts were
reported in parts per million (d), relative to the internal standard of
tetramethylsilane (TMS). Infrared (IR) spectra in solutions were recorded on
a Nicolet Avatar 360 Fourier transform (FT)-IR spectrometer, using calcium
fluoride cells. CAUTION: Some reactions were carried out under oxygen
pressure and in the presence of carbon monoxide. While we experienced no
difficulties in performing these reactions, appropriate precautions should
always be used when combining carbon monoxide, oxygen and organic
materials under pressure. In particular, read the related refererences.22–24
Representative reaction procedure: 10 mmol of substrate, 0.05 mmol of
Cosalen, 0.03 mmol TBD, 20 ml of toluene were put in a glass liner, fitted in
an autoclave, charged with oxygen (2 bar) and carbon monoxide (22 bar) and
heated in a thermoregulated oil bath at 140 °C for 7 h. The autoclave was then
allowed to cool to room temperature and degassed. Direct recovery of the
ureas from the reaction medium was obtained by cooling the reaction mixture
to 0 °C. The resulting precipitate was filtered and re-crystallized from
methanol. The other products were recovered after evaporation of the
solvent under reduced pressure and silica gel chromatography (Merck 0.05-
0.2 mm (R = 50), using dichloromethane-ethyl acetate 1:1 as the eluting
mixture. Isolated products were characterized by MS, IR, and 1H NMR and
the related spectra were compared with the literature data.
Acknowledgements
We thank our students Andrea Agnelli and Andrea Bosisio for
technical support. This work was financial supported by the
University of Milan-Bicocca FAR 2008.
References and notes
1. Kirk-Othmer, 4th ed. In Encyclopaedia of Chemical Technology; Wiley: New York,
1995; Vol. 14, pp 902–905.
2. Bigi, F.; Maggi, R.; Sartori, G. Green Chem. 2000, 2, 140–148.
3. Gabriele, B.; Salerno, G.; Costa, M. Top. Organomet. Chem. 2006, 18, 239–272.
4. Diaz, D. J.; Darko, A. K.; McElwee-White, L. Eur. J. Org. Chem. 2007, 27, 4453.
5. Ragaini, F. Dalton Trans. 2009, 6251–6266.
6. Morimoto, T.; Fuji, K.; Kakiuchi, K. Angew. Chem. 2004, 43, 5580–5588.
7. Marcsekova, K.; Doye, S. Synthesis 2007, 145–154.
8. Shibata, T.; Toshida, N.; Takagi, K. J. Org. Chem. 2002, 67, 7446–7450.
9. Adrian, R. A.; Broker, G. A.; Tiekink, E. R. T.; Walmsley, J. A. Inorg. Chim. Acta
2008, 361, 1261–1266.
10. Gabriele, B.; Mancuso, R.; Salerno, G.; Costa, M. Chem. Commun. 2003, 4, 486–487.
11. Gabriele, B.; Salerno, G.; Brindisi, D.; Costa, M.; Chiusoli, G. P. Org. Lett. 2000, 2,
625–627.
12. Gabriele, B.; Salerno, G.; Mancuso, R.; Costa, M. J. Org. Chem. 2004, 69, 4741–
4750.
13. Gabriele, B.; Salerno, G.; Costa, M.; Chiusoli, G. P. J. Organomet. Chem. 2003, 687,
219–228.
14. Editorial Nat. Geosci. 2011, 4, 653.
15. Bolzacchini, E.; Meinardi, S.; Orlandi, M.; Rindone, B. J. Mol. Cat. A 1996, 111,
281–287.
16. Liu, J-M.; Peng, X.-G.; Liu, J.-H.; Zheng, S.-H.; Sun, W.; Xia, C.-G. Tetrahedron
Lett. 2007, 48, 929–932.
17. Chen, L.-J.; Bao, J.; Mei, F.-M.; Li, G.-X. Catal. Commun. 2008, 9, 658–662.
18. Orejon, A.; Castellanos, A.; Salagre, P.; Castillon, S.; Claver, C. Can. J. Chem. 2005,
83, 764–768.
19. Li, G.; Chen, L.; Bao, J.; Li, T.; Mei, F. Appl. Catal. A 2008, 346, 134–139.
20. Li-Juan, C.; Fu-Ming, M.; Guang-Xing, L. Catal. Commun. 2009, 10, 981–987.
21. Ishikawa, T. Superbases for Organic Synthesis: Phosphazenes and Related
Organocatalysts; Wiley, 2009; p 336.
24. Kirk-Othmer In Encyclopedia of Chemical Technology, Vol. 4. In 4th ed; Wiley:
New York, 1995; p 774.
25. Kondo, S.; Takizawa, K.; Takahashi, A.; Tokuhashi, K. J. Hazard. Mater. 2011, 187,
585–590.
26. Zlochower, I. A.; Green, G. M. J. Loss Prevent. Process Ind. 2009, 22, 499–505.
27. Bozell, J.; Hames, B. R.; Dimmel, D. R. J. Org. Chem. 1995, 60, 2398.
28. Jager, E. G.; Knaudt, J.; Rudolph, M.; Rost, M. Chem. Ber. 1996, 1041, 129.
29. Basolo, F.; Hoffmann, B. M.; Ibers, J. A. J. Acc. Chem. Res. 1975, 8, 384.
30. Chen, D.; Martell, A. E. Inorg. Chem. 1987, 26, 1026–1030.
31. Nishinaga, A.; Tomita, H. J. Mol. Cat. 1980, 7, 179–194.
32. Nishinaga, A.; Yamazaki, S.; Matsuura, T. Tetrahedron Lett. 1988, 29, 4115–
4118.
33. Drago, R. S.; Corden, B. B. Acc. Chem. Res. 1980, 13, 353–357.
34. Bolzacchini, E.; Canevali, C.; Morazzoni, F.; Orlandi, M.; Rindone, B.; Scotti, R. J.
Chem. Soc., Dalton Trans. 1997, 4695–4699.
35. Benedini, F.; Galliani, G.; Nali, M.; Rindone, B.; Tollari, S. J. Chem. Soc. Perkin
Trans. 1985, II, 1963–1967.
36. Zombeck, A.; Drago, R. S.; Corden, B. B.; Gaul, J. H. J. Am. Chem. 1981, 103, 7580–
7585.
37. Forster, S.; Kazushige, A. R.; Maruyama, K. M.; Nishinaga, A. J. Org. Chem. 1996,
61, 10–16.
38. Kiesewettert, M. K.; Scholten, M. D.; Kirnt, N.; Webert, L.; Hedrick, J. L.;
Waymouth, R. M. J. Org. Chem 2009, 74, 9490–9496.
39. Pihko, P. M. Angew. Chem., Int. Ed. 2004, 43, 2062–2064.
40. Sotiriou-Leventis, C.; Mao, Z.; Rawashdeh, A.-M. M. J. Org. Chem. 2000, 65,
6017–6023.
41. Kovacevic, B.; Maksic, Z. B. Org. Lett. 2001, 3, 1523–1526.