RSC Advances
Paper
T. Bach, Angew. Chem., Int. Ed., 2015, 54, 3872–3890; (c)
¨
S. Poplata, A. Troster, Y. Zou and T. Bach, Chem. Rev.,
2016, 116, 9748–9815.
2 (a) M. C. Derosa and R. J. Crutchley, Coord. Chem. Rev., 2002,
233/234, 351–371; (b) A. A. Gorman and M. A. J. Rodgers,
Chem. Soc. Rev., 1981, 10, 205; (c) F. Amat-Guerri,
´
´
´
M. M. C. Lopez-Gonzalez, R. Martınez-Utrilla and R. Sastre,
J. Photochem. Photobiol., A, 1990, 53, 199–210.
3 D. R. Kearns, Chem. Rev., 1971, 71, 395–427.
4 F. Xue, M. Shi, Y. Yan, H. Yang, Z. Zhou and S. Yang, RSC
Adv., 2016, 6, 15509–15512.
5 P. R. Ogilby, Chem. Soc. Rev., 2010, 39, 3181.
Fig. 1 Singlet oxygen quenching experiments. (Reactions were carried
out under optimized conditions with 0, 1 or 2 equivalents of 9,10-
dimethylanthracene.)
6 (a) A. Pace and E. L. Clennan, J. Am. Chem. Soc., 2002, 124,
11236–11237; (b) D. Kalaitzakis, T. Montagnon,
I. Alexopoulou and G. Vassilikogiannakis, Angew. Chem.,
Int. Ed., 2012, 51, 8868–8871; (c) R. Gao, D. G. Ho,
B. Hernandez, M. Selke, D. Murphy, P. I. Djurovich and
M. E. Thompson, J. Am. Chem. Soc., 2002, 124, 14828–
14829; (d) D. B. Ushakov, K. Gilmore, D. Kopetzki,
D. T. McQuade and P. H. Seeberger, Angew. Chem., Int. Ed.,
2014, 53, 557–561; (e) T. Taniguchi, D. Hirose and
H. Ishibashi, ACS Catal., 2011, 1, 1469–1474.
Scheme 2 Proposed mechanism.
˜
7 (a) B. M. Estevao, D. S. Pellosi, C. F. de Freitas, D. Vanzin,
D. S. Franciscato, W. Caetano and N. Hioka, J. Photochem.
Photobiol., A, 2014, 287, 30–39; (b) L. S. Herculano,
L. C. Malacarne, V. S. Zanuto, G. V. B. Lukasievicz,
O. A. Capeloto and N. G. C. Astrath, J. Phys. Chem. B, 2013,
117, 1932–1937; (c) Y. C. Teo, Y. Pan and C. H. Tan,
oxidation process. The trapping product, 9,10-dimethyl-9,10-
dihydro-9,10-epidioxyanthracene, was also observed in crude
1H NMR analysis.17 Styrene and cyclohexene was also added to
the reaction system to trap phosphadioxirane, but no trapping
species was detected.18a
On the basis of the above results and literature precedence,18
a possible mechanism was proposed in Scheme 2. Upon the
irradiation of visible light, Eosin Y reaches its excited state.2c
Then energy transfer between Eosin Y* and oxygen (3O2) gave
singlet oxygen (1O2), and Eosin Y went back to ground state.2a
Triarylphosphine 1 and singlet oxygen (1O2) combined to afford
triarylphosphadioxane 3.18a 3 and another molecule of 1 nally
furnished 2 as the product.18b
´
ChemCatChem, 2013, 5, 235–240; (d) Z. Barbierikova,
´
´
´
M. Mihalıkova and V. Brezova, Photochem. Photobiol., 2012,
˜
88, 1442–1454; (e) D. S. Pellosi, B. M. Estevao,
J. Semensato, D. Severino, M. S. Baptista, M. J. Politi,
N. Hioka and W. Caetano, J. Photochem. Photobiol., A, 2012,
ˇ
247, 8–15; (f) M. Scholz, R. Dedic, T. Breitenbach and
´
J. Hala, Photochem. Photobiol. Sci., 2013, 12, 1873–1884.
8 Y. Gao, G. Lu, P. Zhang, L. Zhang, G. Tang and Y. Zhao, Org.
Lett., 2016, 18, 1242–1245.
9 J. Li, D. Ding, Y. Tao, Y. Wei, R. Chen, L. Xie, W. Huang and
H. Xu, Adv. Mater., 2016, 28, 3122–3130.
Conclusions
10 (a) T. Yu, Y. Wang, X. Hu and P. Xu, Chem. Commun., 2014,
50, 7817–7820; (b) X. Zeng, Z. Cao, X. Wang, L. Chen,
F. Zhou, F. Zhu, C. Wang and J. Zhou, J. Am. Chem. Soc.,
2016, 138, 416–425; (c) C. J. A. Warner, A. T. Reeder and
S. Jones, Tetrahedron: Asymmetry, 2016, 27, 136–141; (d)
H. M. Al-Saidi, J. Saudi Chem. Soc., 2016, 20, 615–624.
11 (a) L. Wang, Y. Wang, M. Chen and M. Ding, Adv. Synth.
Catal., 2014, 356, 1098–1104; (b) M. Schirmer, S. Adomeit,
A. Spannenberg and T. Werner, Chem.–Eur. J., 2016, 22,
2458–2465.
In conclusion, a visible light-induced metal-free photo oxida-
tion of triarylphosphines was developed. Eosin Y was employed
as the catalyst and air was used as the oxidant. Considering that
this protocol is cheap, environmental friendly, easy to operate,
and the substrate scope is broad, this method may be widely
used in the oxidation of phosphine derivatives.
Acknowledgements
We greatly acknowledge the nancial support from Interna-
tional Science & Technology Cooperation Program of China
(2014DFE40130).
12 H. Pan, H. Huang, W. Liu, H. Tian and Y. Shi, Org. Lett.,
2016, 18, 896–899.
13 N. Oka, R. Kajino, K. Takeuchi, H. Nagakawa and K. Ando, J.
Org. Chem., 2014, 79, 7656–7664.
14 (a) K. A. Prokop and D. P. Goldberg, J. Am. Chem. Soc., 2012,
134, 8014–8017; (b) E. K. Beloglazkina, A. G. Majouga,
A. A. Moiseeva, N. V. Zyk and N. S. Zerov, Mendeleev
Notes and references
¨
1 (a) D. P. Hari and B. Konig, Angew. Chem., Int. Ed., 2013, 52,
4734–4743; (b) R. Brimioulle, D. Lenhart, M. M. Maturi and
13242 | RSC Adv., 2017, 7, 13240–13243
This journal is © The Royal Society of Chemistry 2017