Paper
RSC Advances
N. Mahanta, D. M. Szantai-Kis, E. J. Petersson and
D. A. Mitchell, ACS Chem. Biol., 2019, 14, 142.
2
(a) T. Lincke, S. Behnken, K. Ishida, M. Roth and
C. Hertweck, Angew. Chem., Int. Ed., 2010, 49, 2011; (b)
C. J. Schwalen, G. A. Hudson, B. Kille and D. A. Mitchell, J.
Am. Chem. Soc., 2018, 140, 9494; (c) S. Coyne, C. Chizzali,
M. N. A. Khalil, A. Litomska, K. Richter, L. Beerhues and
C. Hertweck, Angew. Chem., Int. Ed., 2013, 52, 10564; (d)
G. E. Kenney, L. M. K. Dassama, M.-E. Pandelia, A. S. Gizzi,
R. J. Martinie, P. Gao, C. J. DeHart, L. F. Schachner,
O. S. Skinner, S. Y. Ro, X. Zhu, M. Sadek, P. M. Thomas,
S. C. Almo, J. M. Bollinger Jr, C. Krebs, N. L. Kelleher and
A. C. Rosenzweig, Science, 2018, 359, 1411; (e) S. A. Abas,
M. B. Hossain, D. van der Helm, F. J. Schmitz, M. Laney,
R. Cabuslay and R. C. Schatzman, J. Org. Chem., 1996, 61,
2709.
Scheme 4 Proposed mechanism of the thioamidation.
3
4
S. Banala and R. D. S u¨ ssmuth, ChemBioChem, 2010, 11, 1335.
A. J. Van Der Vlies, U. Hasegawa and J. A. Hubbell, Mol.
Pharmaceutics, 2012, 9, 2812.
M.-K. Chung, C. M. Hebling, J. W. Jorgenson, K. Severin,
S. J. Lee and M. R. Gagn ´e , J. Am. Chem. Soc., 2008, 130, 11819.
(a) A. Padwa, D. J. Austin, M. Ishida, C. L. Muller,
S. S. Murphree and P. E. Yeske, J. Org. Chem., 1992, 57,
DMSO. Finally, species C decomposed to desired product (3a)
and BnSH, which was then converted to dibenzyldisulde (1a) via
oxidation reaction. During the whole reaction, the catalyst (I )
2
was regenerated by the cycle of HI in the presence of DMSO,
which catalyzed the thioamidation effectively.
5
6
1161; (b) A. S. Hamman and B. E. Bayoumy, Collect. Czech.
Chem. Commun., 1985, 50, 71; (c) C. R. Kelly, I. Gebhard
and N. Wicnienski, J. Org. Chem., 1986, 51, 4590.
Conclusions
7
8
9
J. H. Miwa, L. Pallivathucal, S. Gowda and K. E. Lee, Org.
Lett., 2002, 4, 4655.
P. W. Tan, A. M. Mak, M. B. Sullivan, D. J. Dixon and
J. Seayad, Angew. Chem., Int. Ed., 2017, 56, 16550.
In summary, we have developed a rapid and efficient protocol
for the synthesis of thioamides via the microwave-assisted
iodine-catalyzed oxidative coupling of dibenzyl(difurfuryl)
ꢀ
disuldes with amines at 130 C for 10 minutes. A broad range
(a) J. M. Goldberg, S. Batjargal and E. J. Petersson, J. Am.
Chem. Soc., 2010, 132, 14718; (b) W. Lin, X. Cao, Y. Ding,
L. Yuan and L. Long, Chem. Commun., 2010, 46, 3529; (c)
J. M. Goldberg, R. F. Wissner, A. M. Klein and
E. J. Petersson, Chem. Commun., 2012, 48, 1550; (d)
J. M. Goldberg, S. Batjargal, B. S. Chen and E. J. Petersson,
J. Am. Chem. Soc., 2013, 135, 18651; (e) J. M. Goldberg,
X. Chen, N. Meinhardt, D. C. Greenbaum and
E. J. Petersson, J. Am. Chem. Soc., 2014, 136, 2086; (f)
C. Liu, T. Barrett, X. Chen, J. Ferrie and E. J. Petersson,
ChemBioChem, 2019, 20, 2059.
of amines were tolerated, and all the desired products could be
obtained in good to excellent yields. Comparing with the
previous methods, the present strategy has the advantages of
high efficiency, simple operation, rapid reaction and less cata-
lyst, providing a convenient way to thioamides, which are key
intermediate for synthesis of other heterocycles compounds.
Conflicts of interest
There are no conicts to declare.
1
0 (a) B. Kurpil, B. Kumru, T. Heil, M. Antonietti and
A. Savateev, Green Chem., 2018, 20, 838; (b) Y. A. Tayade,
A. D. Jangale and D. S. Dalal, ChemistrySelect, 2018, 3,
8895; (c) C. T. Brain, A. Hallett and S. Y. Ko, J. Org. Chem.,
1997, 62, 3808; (d) J. Wei, Y. Li and X. Jiang, Org. Lett.,
2016, 18, 340; (e) K. Kumar, D. Konar, S. Goyal, M. Gangar,
M. Chouhan, R. K. Rawal and V. A. Nair, ChemistrySelect,
Acknowledgements
We gratefully acknowledge the National Natural Science Foun-
dation of China (21902014) and the Basic and Frontier Research
Project of Chongqing (Cstc2018jcyjAX0051) for the funding
support.
2
016, 1, 3228.
Notes and references
1
1 (a) R. N. Hurd and G. DeLaMater, Chem. Rev., 1961, 61, 45;
(b) R. Wegler, E. Kuhle and W. Schafer, Angew. Chem., Int.
Ed., 1958, 70, 351; (c) H. R. Darabi, K. Aghapoor and
M. Tajbakhsh, Tetrahedron Lett., 2004, 45, 4167.
1
(a) T. S. Jagodzi n´ ski, Chem. Rev., 2003, 103, 197; (b)
T. Bretschneider, E.-M. Franken, U. G ¨o rgens, M. Fusslein,
A. Hense and J. Kluth, US Pat., US9428487B2, 2016; (c)
P. Jain, P. Verma, G. Xia and J.-Q. Yu, Nat. Chem., 2017, 9, 12 (a) D. L. Priebbenow and C. Bolm, Chem. Soc. Rev., 2013, 42,
1
40; (d) X.-Y. Qian, S.-Q. Li, J. Song and H.-C. Xu, ACS
7870; (b) K. Aghapoor, H. R. Darabi and K. Tabar-Heydar,
Phosphorus, Sulfur Silicon Relat. Elem., 2002, 177, 1183; (c)
K. Okamoto, T. Yamamoto and T. Kanbara, Synlett, 2007,
Catal., 2017, 7, 2730; (e) R. W. Newberry, B. VanVeller and
R. T. Raines, Chem. Commun., 2015, 51, 9624; (f)
This journal is © The Royal Society of Chemistry 2019
RSC Adv., 2019, 9, 28576–28580 | 28579