Page 7 of 8
Please Gd roe en no tC ha ed mj u iss tt r my argins
Journal Name
COMMUNICATION
Acceleration Effect, J. Org. Chem., 2012, 77, 8386–8400. (b)
K. Ishihara, S. Ohara and H. Yamamoto, 3,4,5-
green chemistry perspective on catalytic amide bond
DOI: 10.1039/D0GC02833A
formation, Nat. Catal., 2019, 2(1), 10–17.
14 J. R. Dunetz, J. Magano, G. A. Weisenburger, Large-Scale
Applications of Amide Coupling Reagents for the Synthesis of
Pharmaceuticals, Org. Process Res. Dev., 2016, 20(2), 140–
177.
Trifluorobenzeneboronic acid as an extremely active
amidation catalyst, J. Org. Chem., 1996, 61(13), 4196–4197.
(c) D. N. Sawant, D. B. Bagal, S. Ogawa, K. Selvam and S.
Saito, Org. Lett., 2018, 20(15), 4397–4400. (d) T. Maki, K.
Ishihara and H. Yamamoto, N-alkyl-4-boronopyridinium salts
as thermally stable and reusable amide condensation
catalysts, Org. Lett., 2005, 7(22), 5043–5046. (e) T. Maki, K.
Ishihara and H. Yamamoto, New boron(III)-catalyzed amide
and ester condensation reactions, Tetrahedron, 2007,
15 (a) W. C. Chou, M. C. Chou, Y. Y. Lu, S. F. Chen, S. HMDS-
promoted in situ amidation reactions of carboxylic acids and
amines, Tetrahedron Lett., 1999, 40, 3419–3422. (b) S. H.
Van Leeuwen, P. J. L. M. Quaedflieg, Q. B. Broxterman, R. M.
J. Liskamp, Synthesis of amides from unprotected amino
acids by a simultaneous protection-activation strategy using
dichlorodialkyl silanes, Tetrahedron Lett., 2002, 43(50),
9203–9207. (c) T. Tozawa, Y. Yamane, T. Mukaiyama, A
convenient method for preparations of 1-acylimidazoles and
carboxamides by using novel imidazolylsilane derivatives,
Chem. Lett., 2005, 34(5), 734–735. (d) T. Tozawa, Y. Yamane,
T. Mukaiyama, An effective method for the synthesis of
carboxamides by using tetrakis(pyridine-2-yloxy)silane as a
mild coupling reagent, Chem. Lett., 2005, 34(10), 1334–1335.
(e) T. Tozawa, Y. Yamane, T. Mukaiyama, An efficient method
for the preparation of carboxamides by dehydration
condensation using tetrakis(1,1,1,3,3,3-hexafluoro-2-
propoxy)silane, Chem. Lett., 2005, 34(12), 1586–1587. (f) T.
Tozawa, Y. Yamane, T. Mukaiyama, A convenient method for
the synthesis of carboxamides and thioesters by using
tetrakis(2-methylimidazol-1-yl)silane, Heterocycles, 2006, 67,
629–641. (g) Z. Ruan, R. M. Lawrence, C. B. Cooper,
Phenylsilane as an active amidation reagent for the
preparation of carboxamides and peptides, Tetrahedron
Lett., 2006, 47(43), 7649–7651. (h) T. H. Chan, and L. T. L.
Wong, Silicon Tetrachloride as a Coupling Reagent for Amide
Formation, J. Org. Chem., 1969, 34(9), 2766–2767. (i) T. H.
Chan, L. T. L. Wong, Evaluation of Acyloxysilane as an
Acylating Agent for Peptide Synthesis, J. Org. Chem., 1971,
36(6), 850–853.
6
3(35), 8645–8657. (f) K. Arnold, A. S. Batsanov, B. Davies
and A. Whiting, Synthesis, evaluation and application of
novel bifunctional N, N-di-isopropylbenzylamineboronic acid
catalysts for direct amide formation between carboxylic
acids and amines, Green Chem., 2008, 10(1), 124–13. (g) T.
M. El Dine, J. Rouden and J. Blanchet, Borinic acid catalysed
peptide synthesis, Chem. Commun., 2015, 51(89), 16084–
1
6087. (h) T. Mohy El Dine, W. Erb, Y. Berhault, J. Rouden
and J. Blanchet, Catalytic chemical amide synthesis at room
temperature: One more step toward peptide synthesis, J.
Org. Chem., 2015, 80(9), 4532–4544. (i) Y. Lu, K. Wang and K.
Ishihara, Design of Boronic Acid–Base Complexes as
Reusable Homogeneous Catalysts in Dehydrative
Condensations between Carboxylic Acids and Amines, Asian
J. Org. Chem., 2017, 6(9), 1191–1194. (j) K. Ishihara and Y. Lu,
Boronic acid-DMAPO cooperative catalysis for dehydrative
condensation between carboxylic acids and amines, Chem.
Sci., 2016, 7(2), 1276–1280. (k) P. W. Tang, Boric Acid
Catalyzed Amide Formation from Carboxylic Acids and
Amines: N-benzyl-4-phenylbutyramide, Org. Synth., 2005,
8
1, 262. (l) R. Latta, G. Springsteen and B. Wang,
Development and synthesis of an arylboronic acid-based
solid-phase amidation catalyst, Synthesis, 2001, (11), 1611–
1
613.
1
2 (a) S. Roy, S. Roy and G. W. Gribble, Metal-catalyzed
amidation, Tetrahedron, 2012, 68(48), 9867–9923. (b) S. Y.
Lu, S. S. Badsara, Y. C. Wu, D. M. Reddy and C. F. Lee,
CuCl/TBHP catalyzed synthesis of amides from aldehydes
and amines in water, Tetrahedron Lett., 2016, 57(6), 633–
16 Colvin, E. W. Introduction. In Silicon in Organic Synthesis;
1981; pp 1–3.
17 Y. Nagai, Hydrosilanes as Reducing Agents. A Review, Org.
Prep. Proced. Int. New J. Org. Synth., 1989, 21(4), 501–504.
18 P. G. M. Wuts and T. W. Greene, in Greene’s Protective
Groups in Organic Synthesis, John Wiley & Sons,
6
36. (c) W. Zhang, H. Deng and H. Li, Ir(III)-Catalyzed site-
selective amidation of azoxybenzenes and late-stage
transformation, Org. Chem. Front., 2017, 4(11), 2202–2206.
(d) Y. Park, K. T. Park, J. G. Kim and S. Chang, Mechanistic
Incorporated, 2014, pp. 533–646.
Studies on the Rh(III)-Mediated Amido Transfer Process
Leading to Robust C-H Amination with a New Type of
Amidating Reagent, J. Am. Chem. Soc., 2015, 137(13), 4534–
19 D. C. Braddock, P. D. Lickiss, B. C. Rowley, D. Pugh, T.
Purnomo, G. Santhakumar, S. J. Fussell, Tetramethyl
Orthosilicate (TMOS) as a Reagent for Direct Amidation of
Carboxylic Acids, Org. Lett., 2018, 20(4), 950–953.
4
542. (e) S. Y. Chow, M. Y. Stevens, L. Åkerbladh, S. Bergman
and L. R. Odell, Mild and Low-Pressure fac-Ir(ppy)3-Mediated 20 (a) K. G. Andrews, D. M. Summers, L. J. Donnelly and R. M.
Radical Aminocarbonylation of Unactivated Alkyl Iodides
through Visible-Light Photoredox Catalysis, Chem. - A Eur. J.,
Denton, Catalytic reductive N-alkylation of amines using
carboxylic acids, Chem. Commun., 2016, 52(9), 1855–1858.
(b) E. L. Stoll, T. Tongue, K. G. Andrews, D. Valette, D. J.
Hirst and R. M. Denton, A practical catalytic reductive
amination of carboxylic acids, Chem. Sci., 2020, 11(35),
9494–9500.
2
016, 22(27), 9155–9161. (f) L. Wu, X. Fang, Q. Liu, R.
Jackstell, M. Beller and X. F. Wu, Palladium-catalyzed
carbonylative transformation of C(sp3)-X bonds, ACS Catal.,
2
014, 4(9), 2977–2989. (g) A. E. Hande, V. B. Ramesh and K.
R. Prabhu, Rh(III)-Catalyzed: Ortho -C-(sp2)-H amidation of
ketones and aldehydes under synergistic ligand-accelerated
catalysis, Chem. Commun., 2018, 54(85), 12113–12116. (h) A.
Álvarez-Pérez, M. A. Esteruelas, S. Izquierdo, J. A. Varela and
C. Saá, Ruthenium-Catalyzed Oxidative Amidation of Alkynes
to Amides, Org. Lett., 2019, 21(13), 5346–5350. (i) P. W. Tan,
A. M. Mak, M. B. Sullivan, D. J. Dixon and J. Seayad,
21 K. G. Andrews, R. Faizova and R. M. Denton, A practical and
catalyst-free trifluoroethylation reaction of amines using
trifluoroacetic acid, Nat. Commun., 2017, 8, 1–6.
22 K. G. Andrews and R. M. Denton, A more critical role for
silicon in the catalytic Staudinger amidation: Silanes as non-
innocent reductants, Chem. Commun., 2017, 53, 7982–7985.
23 E. Morisset, A. Chardon, J. Rouden and J. Blanchet,
Phenysilane and Silicon Tetraacetate: Versatile Promotors
for Amide Synthesis, Eur. J. Org. Chem., 2020, 2020(3), 388–
392.
Thioamide-Directed Cobalt(III)-Catalyzed Selective Amidation
of C(sp3)−H Bonds, Angew. Chemie Int. Ed., 2017, 56(52),
1
6550–16554. (j) H. Lundberg and H. Adolfsson, Hafnium-
catalyzed direct amide formation at room temperature, ACS
Catal., 2015, 5(6), 3271–3277.
24 S. J. Aspin, S. Taillemaud, P. Cyr, A. B. Charette, 9-
Silafluorenyl Dichlorides as Chemically Ligating Coupling
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 7
Please do not adjust margins