Journal of the American Chemical Society
Page 4 of 5
it was less active than Sn-Beta which was effective at 80⁰C for
for Atom-efficient Chemical Transformations (IACT), an En-
this Lewis acid-catalyzed hydride transfer reaction.7 The more
open configuration of the Sn center in III also catalyzed the
reaction of large substrates such as cellobiose. In a γ-valerolac-
tone-DMSO mixture at 180 °C, 5-(hydroxymethyl)-furfural
was formed with up to 30% yield and TON = 125 (Scheme 4),
after cleaving the glucoside bond and isomerizing and dehy-
drating the glucose. In contrast, the reported TON for Sn-Beta
in the isomerization of the disaccharide lactose was less than
3.16
ergy Frontier Research Center funded by US DOE Office of
Basic Energy Sciences. JTM and JRG were supported by DOE,
Office of Basic Energy Sciences, DE-AC-02-06CH11357.
1
2
3
4
5
6
7
8
REFERENCES
(1) Nakajima, K.; Baba, Y.; Noma, R.; Kitano, M.; Kondo, J. N.;
Hayashi, S.; Hara, M. J. Am. Chem. Soc. 2011, 133, 4224.
(2) Wang, Y.; Wang, F.; Song, Q.; Xin, Q.; Xu, S.; Xu, J. J. Amer.
Chem. Soc. 2013, 135, 1506.
(3) Hara, M. Bull. Chem. Soc. Japan 2014, 87, 931.
(4) Ali, M. A.; Siddiki, S. M. A. H.; Kon, K.; Hasegawa, J.; Shimizu,
K.-i. Chem. Eur. J. 2014, 20, 14256.
(5) Corma, A.; Nemeth, L. T.; Renz, M.; Valencia, S. Nature 2001,
412, 423.
(6) Corma, A.; Domine, M. E.; Nemeth, L.; Valencia, S. J. Am. Chem.
Soc. 2002, 124, 3194.
(7) Bermejo-Deval, R.; Orazov, M.; Gounder, R.; Hwang, S.-J.; Davis,
M. E. ACS Catal. 2014, 4, 2288.
(8) Pacheco, J. J.; Davis, M. E. Proc. Natl. Acad. Sci. USA 2014, 111,
8363.
(9) Renz, M.; Blasco, T.; Corma, A.; Fornés, V.; Jensen, R.; Nemeth,
L. Chem. Eur.J. 2002, 8, 4708.
(10) Corma, A.; Domine, M. E.; Valencia, S. J. Catal. 2003, 215, 294.
(11) Bare, S. R.; Kelly, S. D.; Sinkler, W.; Low, J. J.; Modica, F. S.;
Valencia, S.; Corma, A.; Nemeth, L. T. J. Am. Chem. Soc. 2005, 127,
12924.
(12) Bermejo-Deval, R.; Gounder, R.; Davis, M. E. ACS Catal. 2012,
2, 2705.
(13) Moliner, M.; Roman-Leshkov, Y.; Davis, M. E. Proc. Natl. Acad.
Sci. USA 2010, 107, 6164.
(14) Alarcon, E. A.; Villa, A. L.; Montes de Correa, C. Microporous
Mesoporous Mater. 2009, 122, 208.
(15) Gaydhankar, T. R.; Joshi, P. N.; Kalita, P.; Kumar, R. J. Mol. Cat.
A: Chem. 2007, 265, 306.
(16) Gounder, R.; Davis, M. E. J. Catal. 2013, 308, 176.
(17) Nikolla, E.; Román-Leshkov, Y.; Moliner, M.; Davis, M. E. ACS
Catal.2011, 1, 408.
(18) Holm, M. S.; Pagan-Torres, Y. J.; Saravanamurugan, S.; Riisager,
A.; Dumesic, J. A.; Taarning, E. Green Chem.2012, 14, 702.
(19) Beletskiy, E. V.; Shen, Z.; Riofski, M. V.; Hou, X.; Gallagher, J.
R.; Miller, J. T.; Wu, Y.; Kung, H. H.; Kung, M. C. Chem. Commun.
2014, 50, 15699
(20) Wang, X.; Xu, H.; Fu, X.; Liu, P.; Lefebvre, F.; Basset, J.-M. J.
Mol. Catal. A; Chem. 2005, 238, 185.
(21) Li, L.; Liu, J.; Su, Y.; Li, G.; Chen, X.; Qiu, X.; Yan, T.
Nanotechnology 2009, 20, 155706/1.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Scheme 4. Cellobiose conversion into (5-hydroxyme-
thyl)furfural catalyzed by III
OH
OH
III
O
HO
HO
CH2OH
O
HO
O
O
GVL, DMSO
180 °C
OH
OHC
OH
OH
Cellobiose
HMF, 30%
In summary, we have successfully synthesized a uniform, Td
Sn-based Lewis acid catalyst on a nonporous support utilizing
a Sn-precursor stabilized by a bulky silsesquioxane ligand. The
supported Sn catalyst was capable of catalyzing typical reac-
tions such as hydride transfer, but could also mediate
Brønsted acid catalyzed reactions such as epoxide ring open-
ing, acetal formation and glucoside bond cleavage. The
Brønsted acid pathway was suppressed in presence of bulky
hydrophobic substituents and pyridine additive, while Lewis
acid pathway remained intact, at least in simple hydride trans-
fer reactions. Thus, two tunable modes of activation are pos-
sible for a single catalytic site, and this offers a new avenue in
Sn-mediated catalysis.
ASSOCIATED CONTENT
Supporting Information
Experimental procedures, synthesis of materials, EXAFS,
NMR, DRIFT and UV-vis spectra, catalyst testing and poison-
ing experiment details are included in the supporting infor-
mation. This material is available free of charge via the inter-
(22) Yang, H.; Lu, Q.; Gao, F.; Shi, Q.; Yan, Y.; Zhang, F.; Xie, S.; Tu,
B.; Zhao, D. Adv. Funct. Mater. 2005, 15, 1377.
(23) Parry, E. P. J. Catal. 1963, 2, 371.
(24) Mal, N. K.; Ramaswamy, A. V. J. Mol. Catal. A: Chem. 1996, 105,
149.
(25) de Graauw, C. F.; Peters, J. A.; van Bekkum, H.; Huskens, J.
Synthesis 1994, 1007.
(26) Anwander, R.; Palm, C. Stud. Surf. Sci. Catal. 1998, 117, 413.
(27) Zhu, Y.; Chuah, G.; Jaenicke, S. J. Catal. 2004, 227, 1.
(28) Sushkevich, V. L.; Ivanova, I. I.; Tolborg, S.; Taarning, E. J.
Catal. 2014, 316, 121.
(29) Luo, H. Y.; Consoli, D. F.; Gunther, W. R.; Román-Leshkov, Y.
J. Catal. 2014, 320, 198.
(30) Lewis, J. D.; Van de Vyver, S.; Crisci, A. J.; Gunther, W. R.;
Michaelis, V. K.; Griffin, R. G.; Román-Leshkov, Y. ChemSusChem
2014, 7, 2255.
AUTHOR INFORMATION
Corresponding Author
Mayfair C. Kung, Harold H. Kung
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
DOE Office of Basic Energy Sciences, DE-FG02-01ER15184 for
support of this work; the NUANCE facilities at Northwestern
University, the MR-CAT at the APS at the Argonne National
Laboratory (DE-AC02-06CH11357) for characterization; Cabot
Corporation for EH-5 silica sample, XH acknowledged support
by Chinese Scholarship Fund and partial funding by Institute
(31) Tang, B.; Dai, W.; Wu, G.; Guan, N.; Li, L.; Hunger, M. ACS
Catal. 2014, 4, 2801.
ACS Paragon Plus Environment