10.1002/anie.201914896
Angewandte Chemie International Edition
COMMUNICATION
(Figure 1C, Figure S22). To reveal possible pathway involved in
the second reaction, the proposed intermediates 4 and 6 were
synthesized. As shown in Scheme 2, pathway i, followed by
hydroxylation at the C5 position of 4, 5, which likely tautomerizes
to 6 rapidly, may proceed through dehydration/decarboxylation to
produce 2. Alternatively, second hydroxylation of 3 will produce 6
through the proposed intermediate 7. After incubating enzyme, Fe,
2OG, O2 and cis-4, the reactions were analyzed by LC-MS. Under
the current conditions, no production of 2 can be detected. When
6 was tested with enzyme under anoxic conditions or in the
presence of 2OG and O2, production of 2 was not observed
(Figure S18). Although it is possible that cis-4 or 6 cannot enter
the active site, or the trans-4 serves as the actual intermediate,
these results imply the pathway involving 4 or 6 is less likely and
suggest that the alternative pathway may be utilized (pathway ii)
where isonitrile formation possibly involves a reactive iron species
assisted decarboxylation. Namely, during the second reaction,
the presumptive ferryl species is used to trigger decarboxylation
by activating the N and the reaction is then followed by
dehydration (3 8 2). Alternatively, subsequent to dehydration
of 3, an analogous decarboxylation will result in protonated
isonitrile (9). Although it is less common, desaturation via
oxidative decarboxylation has been reported in several Fe/2OG
enzymes catalyzed olefination.[10] In addition, N-hydroxylation
was reported in a non-heme iron enzyme catalyzed reaction in
streptozotocin biosynthesis.[11]
In short, in studying three Fe/2OG enzyme catalyzed isonitrile
installation, the experimental analyses establish that isonitrile
formation goes through two consecutive, but distinctive, reactions.
In the first reaction, an Fe(IV)-oxo species is utilized to generate
C5-hydroxylated product (3). Conversion of 3 to 2 likely proceeds
by decarboxylation-assisted desaturation. Although the detailed
mechanism remains to be evaluated, these observations enrich
our view in diverse strategies that Fe/2OG enzymes used to
catalyze novel reactions. Considering the conserved biosynthetic
approach used to install the isonitrile-containing peptides found in
several pathogenic bacteria, these observations may shed light
for development of new anti-virulence therapeutics target for
bacterial infection.
Keywords: Fe/2OG enzyme • isonitrile • enzyme mechanism •
decarboxylation • catalysis
[1]
a) L. J. Wang, M. Y. Zhu, Q. B. Zhang, X. Zhang, P. L. Yang, Z. H. Liu,
Y. Deng, Y. G. Zhu, X. S. Huang, L. Han, S. Q. Li, J. He, ACS Chem. Biol.
2017, 12, 3067-3075; b) J. M. Crawford, C. Portmann, X. Zhang, M. B. J.
Roeffaers, J. Clardy, Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 10821-10826; c)
S. Y. Mo, A. Krunic, G. Chlipala, J. Orjala, J. Nat. Prod. 2009, 72, 894-899; d)
M. F. Clarke-Pearson, S. F. Brady, J. Bacteriol. 2008, 190, 6927-6930; e) S. F.
Brady, J. Clardy, Angew. Chem. Int. Ed. Engl. 2005, 44, 7063-7065; f) M. J.
Garson, J. S. Simpson, Nat. Prod. Rep. 2004, 21, 164-179; g) K. Stratmann,
R. E. Moore, R. Bonjouklian, J. B. Deeter, G. M. L. Patterson, S. Shaffer, C. D.
Smith, T. A. Smitka, J. Am. Chem. Soc. 1994, 116, 9935-9942; h) W. L.
Parker, M. L. Rathnum, J. H. Johnson, J. S. Wells, P. A. Principe, R. B. Sykes,
J. Antibiot. 1988, 41, 454-460; i) C. W. J. Chang, A. Patra, D. M. Roll, P. J.
Scheuer, G. K. Matsumoto, J. Clardy, J. Am. Chem. Soc. 1984, 106, 4644-
4646.
[2]
a) W.-c. Chang, D. Sanyal, J. L. Huang, K. Ittiamornkui, Q. Zhu, X. Liu,
Org. Lett. 2017, 19, 1208-1211; b) S. F. Brady, J. Clardy, Angew. Chem. Int.
Ed. Engl. 2005, 44, 7045-7048.
[3]
a) N. C. Harris, D. A. Born, W. L. Cai, Y. B. Huang, J. Martin, R. Khalaf,
C. L. Drennan, W. J. Zhang, Angew. Chem. Int. Ed. Engl. 2018, 57, 9707-
9710; b) N. C. Harris, M. Sato, N. A. Herman, F. Twigg, W. L. Cai, J. Liu, X. J.
Zhu, J. Downey, R. Khalaf, J. Martin, H. Koshino, W. J. Zhang, Proc. Natl.
Acad. Sci. U.S.A. 2017, 114, 7025-7030.
[4]
a) M. S. Islam, T. M. Leissing, R. Chowdhury, R. J. Hopkinson, C. J.
Schofield, Annu. Rev. Biochem. 2018, 87, 585-620; b) S. S. Gao, N.
Naowarojna, R. Cheng, X. Liu, P. Liu, Nat. Prod. Rep. 2018, 35, 792-837; c) S.
Martinez, R. P. Hausinger, J. Biol. Chem. 2015, 290, 20702-20711; d) J. M.
Bollinger, Jr.;, W.-c. Chang, M. L. Matthews, R. J. Martinie, A. K. Boal, C.
Krebs, in 2-Oxoglutarate-Dependent Oxygenases (Eds.: R. P. Hausinger, C. J.
Schofield), Royal Society of Chemistry 2015, pp. 95-122.
[5]
a) J. C. Price, E. W. Barr, B. Tirupati, J. M. Bollinger, Jr., C. Krebs,
Biochemistry 2003, 42, 7497-7508; b) J. C. Price, E. W. Barr, T. E. Glass, C.
Krebs, J. M. Bollinger, Jr., J. Am. Chem. Soc. 2003, 125, 13008-13009.
[6]
Hausinger, C. J. Schofield), Royal Society of Chemistry, 2015, pp. 1-58.
[7] S. Omura, H. Ikeda, J. Ishikawa, A. Hanamoto, C. Takahashi, M.
R. P. Hausinger, in 2-Oxoglutarate-Dependent Oxygenases (Eds.: R. P.
Shinose, Y. Takahashi, H. Horikawa, H. Nakazawa, T. Osonoe, H. Kikuchi, T.
Shiba, Y. Sakaki, M. Hattori, Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 12215-
12220.
[8]
a) W.-c. Chang, Y. Guo, C. Wang, S. E. Butch, A. C. Rosenzweig, A. K.
Boal, C. Krebs, J. M. Bollinger, Jr., Science 2014, 343, 1140-1144; b) N. P.
Dunham, W.-c. Chang, A. J. Mitchell, R. J. Martinie, B. Zhang, J. A. Bergman,
L. J. Rajakovich, B. Wang, A. Silakov, C. Krebs, A. K. Boal, J. M. Bollinger, Jr.,
J. Am. Chem. Soc. 2018, 140, 7116-7126; c) A. J. Mitchell, N. P. Dunham, J.
A. Bergman, B. Wang, Q. Zhu, W.-c. Chang, X. Liu, A. K. Boal, Biochemistry
2017, 56, 441-444.
Acknowledgements
[9]
W.-c. Chang, J. Li, J. L. Lee, A. A. Cronican, Y. Guo, J. Am. Chem.
Soc. 2016, 138, 10390-10393.
This work was supported by North Carolina State University,
Carnegie Mellon University, grants from the National Key
[10] a) C. P. Yu, Y. Tang, L. Cha, S. Milikisiyants, T. I. Smirnova, A. I.
Smirnov, Y. Guo, W.-c. Chang, J. Am. Chem. Soc. 2018, 140, 15190-15193;
b) J. Zhu, G. M. Lippa, A. M. Gulick, P. A. Tipton, Biochemistry 2015, 54,
2659-2669; c) J. L. Huang, Y. Tang, C. P. Yu, D. Sanyal, X. Jia, X. Liu, Y.
Guo, W.-c. Chang, Biochemistry 2018, 57, 1838-1841.
Research
and
Development
Program
of
China
(2018YFA0901900 to J.Z.), Shanghai Municipal Science and
Technology Commission (19XD1404800 to J.Z.), and the
National Institutes of Health (GM127588 to W.-c. C., and Y. G.).
We thank the staffs in beamline BL17U1 and BL19U1 of Shanghai
Synchrotron Radiation Facility for help in data collection. We also
thank Prof. Jianhua Gan for his help in structure refinement.
[11] a) T. L. Ng, R. Rohac, A. J. Mitchell, A. K. Boal, E. P. Balskus, Nature
2019, 566, 94-99; b) H. Y. He, A. C. Henderson, Y. L. Du, K. S. Ryan, J. Am.
Chem. Soc. 2019, 141, 4026-4033.
Author Contributions
†These authors contributed equally.
4
This article is protected by copyright. All rights reserved.