Paper
RSC Advances
benet more balanced hole and electron transport in the poly- Electronic Technology (UF15011Y), and the EU projects
mer/PC71BM blend layer. Since the FF value of PSC is positively SUNFLOWER (FP7-ICT-2011-7, Grant number: 287594).
correlated to the balance of hole and electron transport, the
calculated mobility are consistent with the device results, from
which polymer PIDTT-DTBT-based devices show higher FF in
References
comparison with those based on polymer PIDTT-DTBO. In
addition, the hole mobilities of PIDTT-DTBO and PIDTT-DTBT
are lower than that of PIDTT-Qx (2.9 ꢂ 10ꢁ4 cm2 Vꢁ1 sꢁ1) from
the previous report, which can attribute to the relatively inferior
PCEs of the solar cells based on PIDTT-DTBO and PIDTT-
DTBT.39 Among the high-performing donor polymers in the
current reports, the hole mobilities of PIDTT-DTBO and PIDTT-
DTBT are on the low side.13,14,18,58
1 F. C. Krebs, S. A. Gevorgyan and J. Alstrup, J. Mater. Chem.,
2009, 19, 5442–5451.
¨
2 N. Espinosa, M. Hosel, D. Angmob and F. C. Krebs, Energy
Environ. Sci., 2012, 5, 5117–5132.
3 G. Yu, J. Gao, J. C. Hummelen, F. Wudl and A. J. Heeger,
Science, 1995, 270, 1789–1791.
4 G. Dennler, M. C. Scharber and C. J. Brabec, Adv. Mater.,
2009, 21, 1323–1338.
5 M. Wang, X. W. Hu, P. Liu, W. Li, X. Gong, F. Huang and
Y. Cao, J. Am. Chem. Soc., 2011, 133, 9638–9641.
6 E. G. Wang, Z. F. Ma, Z. Zhang, K. Vandewal, P. Henriksson,
Conclusions
¨
O. Inganas, F. L. Zhang and M. R. Andersson, J. Am. Chem.
In summary, three new ladder-type conjugated polymers PIDTT-
DTBO, PIDTT-DTBT and PIDTT-DTFBT have been synthesized
and well characterized to understand the effects of inclusive
electronegative atoms (O, S and F) on properties of IDTT-based
polymers. The extended p-conjugation of polymer backbones
were formed with electron-rich IDTT unit and electron-poor BO,
BT and FBT units. The donor and acceptor portion coupled via
two bis-thiophenes appear to afford a high level of coplanar D–
p–A conjugation. As expected, the strong electron-withdrawing
atoms on acceptor moieties can affect the processing, optical,
electrochemical properties and dipole moments of IDTT-based
polymers in different ways. Aer introduction of the most
electronegative uorine atoms onto BT unit, intensely
decreased solubility of polymer PIDTT-DTFBT is observed. On
the contrary, polymer PIDTT-DTBO and PIDTT-DTBT display
good solubility, sufficient thermal stability, low band-gaps and
deep HOMO levels. Compared to BT unit, the stronger electron-
withdrawing BO unit can afford net red-shied absorption,
more stable HOMO and LUMO levels for polymer PIDTT-DTBO.
In contrast, aer thermal annealing, polymer PIDTT-DTBT
depicts a slight ascent of surface roughness, more efficient
charge collection and higher hole mobility to maintain the
balance of charge transport. As a result, BHJ PSCs incorporating
blends of polymer PIDTT-DTBT with PC71BM have provided
reasonably good PCE of 4.9%, while a PCE of 4.6% is noted in
polymer PIDTT-DTBO-based devices. The results attest the
inclusive electronegative atoms (O, S and F) in acceptor portion
can tailor the properties of IDTT-based polymers in many
different ways, thus affect the nal device performances of
PSCs. Through judicial selection of electronegative atoms and
structural optimization in acceptor moieties, rational synthesis
of more performing conjugated polymers is underway to drive
the photovoltaic efficiency to economically viable levels.
Soc., 2011, 133, 14244–14247.
7 K. H. Ong, S. L. Lim, H. S. Tan, H. K. Wong, J. Li, Z. Ma,
L. C. H. Moh, S. H. Lim, J. C. de Mello and Z. K. Chen, Adv.
Mater., 2011, 23, 1409–1413.
8 C. E. Small, S. Chen, J. Subbiah, C. M. Amb, S. W. Tsang,
T. H. Lai, J. R. Reynolds and F. So, Nat. Photonics, 2012, 6,
115–120.
9 Z. C. He, C. M. Zhong, S. J. Su, M. Xu, H. B. Wu and Y. Cao,
Nat. Photonics, 2012, 6, 591–595.
10 A. C. Stuart, J. R. Tumbleston, H. X. Zhou, W. T. Li, S. B. Liu,
H. Ade and W. You, J. Am. Chem. Soc., 2013, 135, 1806–1815.
11 H. L. Zhong, Z. Li, F. Deledalle, E. C. Fregoso, M. Shahid,
Z. P. Fei, C. B. Nielsen, N. Yaacobi-Gross, S. Rossbauer,
T. D. Anthopoulos, J. R. Durrant and M. Heeney, J. Am.
Chem. Soc., 2013, 135, 2040–2043.
12 Y. Wu, Z. J. Li, W. Ma, Y. Huang, L. J. Huo, X. Guo,
M. J. Zhang, H. Ade and J. H. Hou, Adv. Mater., 2013, 25,
3449–3455.
13 Z. H. Chen, P. Cai, J. W. Chen, X. C. Liu, L. J. Zhang, L. F. Lan,
J. B. Peng, Y. G. Ma and Y. Cao, Adv. Mater., 2014, 26, 2586–
2591.
14 Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin,
H. Ade and H. Yan, Nat. Commun., 2014, 5, 5293.
15 Z. He, B. Xiao, F. Liu, H. Wu, Y. Yang, S. Xiao, C. Wang,
T. P. Russell and Y. Cao, Nat. Photonics, 2015, 9, 174–179.
16 J. D. Chen, C. H. Cui, Y. Q. Li, L. Zhou, Q. D. Ou, C. Li, Y. F. Li
and J. X. Tang, Adv. Mater., 2015, 27, 1035–1041.
17 S. Zhang, L. Ye and J. Hou, Adv. Energy Mater., 2016, 1502529.
18 J. Zhao, Y. Li, G. Yang, K. Jiang, H. Lin, H. Ade, W. Ma and
H. Yan, Nat. Energy, 2016, 1, 15027.
19 J. W. Chen and Y. Cao, Acc. Chem. Res., 2009, 42, 1709–1718.
20 Y. J. Cheng, S. H. Yang and C. S. Hsu, Chem. Rev., 2009, 109,
5868–5923.
21 Y. F. Li, Acc. Chem. Res., 2012, 45, 723–733.
22 H. X. Zhou, L. Q. Yang and W. You, Macromolecules, 2012, 45,
607–632.
Acknowledgements
The authors gratefully acknowledge the nancial support of the 23 H. X. Zhou, L. Q. Yang, A. C. Stuart, S. C. Price, S. B. Liu and
Guangxi Natural Science Foundation (2016GXNSFBA380129), W. You, Angew. Chem., Int. Ed., 2011, 50, 2995–2998.
the Department of Education of Guangxi (ky2016YB146), the 24 S. C. Price, A. C. Stuart, L. Q. Yang, H. X. Zhou and W. You, J.
PhD research startup foundation of Guilin university of
Am. Chem. Soc., 2011, 133, 4625–4631.
This journal is © The Royal Society of Chemistry 2017
RSC Adv., 2017, 7, 20440–20450 | 20449