2
078
K. H. Kim et al. / Bioorg. Med. Chem. Lett. 21 (2011) 2075–2078
Table 2
Effects of compounds 1–12 on NGF secretion and cell viability in C6 cells
Supplementary data
a
Compounds
NGF secretion
107.2 ± 1.2
Cell viability
1
2
3
4
5
6
7
8
9
105.9 ± 4.5
98.0 ± 1.5
95.0 ± 4.7
100.9 ± 2.8
99.8 ± 1.3
102.5 ± 1.7
103.5 ± 2.7
101.0 ± 2.3
104.9 ± 1.5
103.7 ± 4.0
101.6 ± 1.9
100.2 ± 2.7
b
132.9 ± 3.6
106.1 ± 4.3
106.8 ± 6.3
105.6 ± 4.1
References and notes
1
2
.
.
Levi-Montalcini, R. Harvey Lect. 1966, 60, 217.
Whittemore, S. R.; Friedman, P. L.; Larhammar, D.; Persson, H.; Gonzalez-
Carvajal, M.; Holets, V. R. J. Neurosci. Res. 1988, 20, 403.
b
120.7 ± 4.6
106.1 ± 2.8
122.2 ± 4.5
117.0 ± 3.4
b
3. Hartikka, J.; Hefti, F. J. Neurosci. 1988, 8, 2967.
4. Kromer, L. F. Science 1987, 235, 214.
5. Wyman, T.; Rohrer, D.; Kirigiti, P.; Nichols, H.; Pilcher, K.; Nilaver, G.; Machida,
C. Gene Ther. 1999, 6, 1648.
b
1
1
1
0
1
2
104.6 ± 1.1
117.5 ± 3.3
b
6.
Fernyhough, P.; Diemel, L. T.; Brewster, W. J.; Tomlinson, D. R. Neuroscience
994, 62, 337.
102.4 ± 1.4
1
a
C6 cells were treated with 20
l
M of compounds 1–12. After 24 h, the content of
7. Friden, P. M.; Walus, L. R.; Watson, P.; Doctrow, S. R.; Kozarich, J. W.; Backman,
C.; Bergman, H.; Hoffer, B.; Bloom, F.; Granholm, A. C. Science 1993, 259, 373.
8. Kang, T. H.; Choi, S. Z.; Lee, T. H.; Son, M. W.; Park, J. H.; Kim, S. Y. Korean J. Food
Nutr. 2008, 21, 430.
NGF secretion in C6-conditioned media was measured by ELISA, and the cell via-
bility was determined by MTT assay. The level of secreted NGF and viable cells are
expressed as percentage of the untreated control. The data shown represent the
means ± SD of three independent experiments performed in triplicate.
9.
Wu, J. N. Chinese Materia Medica; Oxford University Press: New York, 2005. p
b
264.
p <0.05 indicates significantly different from control group (Student’s t-test).
10. Hikino, H.; Konno, C.; Takahashi, M. Planta Med. 1986, 52, 168.
11. Miyazawa, M.; Shimamura, H.; Nakamura, S.; Kameoka, H. J. Agric. Food Chem.
1
996, 44, 1647.
concentrations below 20 lM (data not shown). The above results
1
2. Liu, H.; Chou, G. X.; Wu, T.; Guo, Y. L.; Wang, S. C.; Wang, C. H.; Wang, Z. T. J.
Nat. Prod. 2009, 72, 1964.
13. Takasugi, M.; Kawashima, S.; Monde, K.; Katsui, N.; Masamune, T.; Shirata, A.
Phytochemistry 1987, 26, 371.
4. Pabst, A.; Barron, D.; Adda, J.; Schreier, P. Phytochemistry 1990, 29, 3853.
5. Shetty, H. U.; Nelson, W. L. J. Med. Chem. 1988, 31, 55.
suggest that the active compounds (2, 6, 8, 9, and 11) promote syn-
thesis of NGF, which might enhance neuron cell survival in neuro-
degenerative disease models.
1
1
1
In conclusion, the structures of two new furostanol saponins
(1–2), along with ten known compounds (3–12) isolated from
6. Kikuzaki, H.; Kobayashi, M.; Nakatani, N. Phytochemistry 1991, 30, 3647.
the rhizomes of D. japonica were identified. While steroidal sapo-
nins have been described as the primary and characteristic constit-
uents of this species, the presence of furostanol saponins studied
here is reported from this plant for the first time. With regard to
bioactivity, compounds 2, 6, 8, 9, and 11 induced NGF secretion
17. Shen, G.; Oh, S. R.; Min, B. S.; Lee, J.; Ahn, K. S.; Kim, Y. H.; Lee, H. K. Arch.
Pharmacol. Res. 2008, 31, 10.
1
1
8. Yamano, Y.; Ito, M. Chem. Pharm. Bull. 2005, 53, 541.
9. Fagboun, D. E.; Ogundana, S. K.; Adesanya, S. A.; Roberts, M. F. Phytochemistry
1987, 26, 3187.
20. Lin, L. G.; Yang, X. Z.; Tang, C. P.; Ke, C. Q.; Zhang, J. B.; Ye, Y. Phytochemistry
2008, 69, 457.
in C6 cells at 20 lM. The most potent stimulant of NGF release,
21. El-Lakany, A. M.; Aboul-Ela, M. A.; Hammoda, H. M.; Abdul-Ghani, M. M.
Pharmazie 2003, 58, 940.
coreajaponin B (2), may have a potential for neuroprotection via
inducing NGF secretion and may deserve further investigation as
a candidate for regulation of neurodegenerative diseases and dia-
betic polyneuropathy. The apparent activity of multiple compo-
nents from this root suggests the possibility of additive or
synergistic effects which merits further investigation.
2
2
2. Yin, F.; Hu, L.; Pan, R. Chem. Pharm. Bull. 2004, 52, 1440.
3. Kiyosawa, S.; Hutoh, M.; Komori, T.; Nohara, T.; Hosokawa, I.; Kawasaki, T.
Chem. Pharm. Bull. 1968, 16, 1162.
24. Pettit, G. R.; Zhang, Q.; Pinilla, V.; Hoffmann, H.; Knight, J. C.; Doubek, D. L.;
Chapuis, J. C.; Pettit, R. K.; Schmidt, J. M. J. Nat. Prod. 2005, 68, 729.
2
2
5. Hara, S.; Okabe, H.; Mihashi, K. Chem. Pharm. Bull. 1987, 35, 501.
6. Acharya, D.; Mitaine-Offer, A. C.; Kaushik, N.; Miyamoto, T.; Paululat, T.;
Mirjolet, J. F.; Duchamp, O.; Lacaille-Dubois, M. A. J. Nat. Prod. 2010, 73, 7.
Acknowledgements
27. Matsuo, Y.; Watanabe, K.; Mimaki, Y. Biosci. Biotechnol. Biochem. 2008, 72, 1714.
28. Aquino, R.; Behar, I.; De Simone, F.; D’Agostino, M.; Pizza, C. J. Nat. Prod. 1986,
9, 1096.
4
This study was supported by a grant from the Korea Healthcare
Technology R&D Project, Ministry for Health, Welfare & Family
Affairs, Republic of Korea (2009-A081053). We thank Drs. E.J. Bang,
S.G. Kim, and J.J. Seo at the Korea Basic Science Institute for their
aid in the NMR and MS spectra measurements.
2
9. Abdel-Aziz, A. M. E.; Brain, K. R.; Blunden, G.; Crabb, T.; Bashir, A. K. Planta Med.
1990, 56, 218.
0. Agrawal, P. K. Magn. Reson. Chem. 2004, 42, 990.
1. Sharma, S. C.; Chand, R.; Sati, O. P. Phytochemistry 1982, 21, 2075.
2. Mosmann, T. J. Immunol. Methods 1983, 65, 55.
3
3
3
33. Schwartz, J. P.; Costa, E. Naunyn-Schmiedeberg’s Arch. Pharmacol. 1977, 300, 123.