Polyamide Synthesis
FULL PAPER
at 40000 rpm. It should be noted that this method results in the loss of
the low-molecular-weight fraction of the product. The solid-state post-
condensation was performed by heating the finely ground polymer to
1858C, for 24 h, under a nitrogen flow, by using the method described in
literature.[20]
(BASF A.-G.), DE Patent 19753301, 1997; g) E. L. Martin (DuPont),
US Patent 2357484, 1944. The operating temperature is typically
near or above 3008C. However, under these conditions the uncata-
lyzed nitrile hydrolysis already proceeds with a decent rate, making
it difficult to measure the effect of the oxide. h) A. Kramer, S. Mit-
telstadt, H. Vogel, Chem. Eng. Technol. 1999, 22, 494–500. Further-
more, the process requires a highly dilute system to obtain the
lactam, which corresponds to a large excess of water in the process.
[4] a) K. Yamaguchi, M. Matsushita, N. Mizuno, Angew. Chem. 2004,
116, 1602–1606; Angew. Chem. Int. Ed. 2004, 43, 1576–1580; b) H.
Hayashi, H. Nishi, Y. Watanabe, T. Okazaki, J. Catal. 1981, 69, 44–
50; c) Y. Izumi, Catal. Today 1997, 33, 371–409; d) K. Mori, K. Ya-
maguchi, T. Mizugaki, K. Ebitani, K. Kaneda, Chem. Commun.
2001, 461–462; e) D. R. Millic, D. M. Opsenica, B. Adnadevic, B. A.
Solaja, Molecules 2000, 5, 118–126; f) T. Ushikubo, Y. Hara, K.
Wada, Catal. Today 1993, 16, 525–535; g) F. Nozaki, T. Sodesawa, T.
Yamamoto, J. Catal. 1983, 84, 267–269; h) K. K. Dzhumakaev, Y.
Isakov, G. T. Fedolyak, K. Minachev, T. A. Isakova, A. D. Kagarlit-
skii, Kinet. Katal. 1987, 28, 856–860.
Polymer analysis: The molecular weight distribution of the synthesized
nylon-6 was determined by using size-exclusion chromatography (SEC)
with hexafluoroisopropanol (HFIP) as eluent. The SEC set-up consecu-
tively consists of an eluent degasser (Alltech Elite), a gradient pump
(Shimadzu, LC-10 AD), an injector (Spark Holland, Midas), a two-
column set (PSS, PFG Linear xl 7 mm 8300 mm) in series, and a differ-
ential refractive-index detector (DRI) (Waters, 2414). After injection of a
50-mL sample, the separation was established with
a flow rate of
0.8 mLminÀ1, at a constant temperature of 408C. The HFIP (Biosolve,
AR-S grade) was recycled and distilled when necessary. For evaluation of
the molecular weight distributions the DRI detector was used as a con-
centration detector. The calculated molecular weights were based on a
calibration curve for poly(methyl methacrylate) standards (molar mass
range 650–1.5104 gmolÀ1) of narrow polydispersity (Polymer Laborato-
ries) in HFIP. The presence of nitrile functionalities in the polyamide
product was assessed with transmission IR spectroscopy (Biorad,
FTS 6000) on a thin polymer film, obtained by compression of a polymer
particle with a diamond press.
[5] Although ruthenium on Al2O3 is highly active for the selective ni-
trile hydrolysis (ref. [4a], with our system a 30% loss of amine se-
lectivity in the conversion of hexylamine into N-hexylpentanamide
is observed after 2 h, at 1608C. Furthermore, the presence of nitrile,
amine, and water results in leaching of the metal because a clear-
colored reaction mixture was observed, due to ruthenium in solu-
tion.
[6] S. Gomez, J. A. Peters, T. Maschmeyer, Adv. Synth. Catal. 2002, 344,
1037–1057.
[7] D. R. Corbin, S. Schwarz, G. C. Sonnichsen, Catal. Today 1997, 37,
71–102.
[8] N. A. Bhore, M. T. Klein, K. B. Bischoff, Ind. Eng. Chem. Res. 1990,
29, 313–316.
Acknowledgements
The authors thank the Dutch Polymer Institute (DPI) for their financial
support. This research forms part of the research program of the Dutch
Polymer Institute (DPI), project #297.
[9] a) B. Izzo, M. T. Klein, C. LaMarca, N. C. Scrivner, Ind. Eng. Chem.
Res. 1999, 38, 1183–1191; b) A. J. Belsky, T. B. Brill, J. Phys. Chem.
A 1999, 103, 3006–3012; c) B. Izzo, C. L. Harrell, M. T. Klein,
AIChE J. 1997, 43, 2048–2058.
[10] For the uncatalyzed amidation the only observed product is N-hex-
ylpentanamide.
[11] K. Takahashi, M. Shibagaki, H. Kuno, H. Kawakami, H. Matsushita,
Bull. Chem. Soc. Jpn. 1989, 62, 1333–1334.
[12] A. Aboulayt, C. Binet, J. C. Lavalley, J. Chem. Soc. Faraday Trans.
1995, 91, 2913–2920.
[13] a) C. Morterra, G. Cerrato, E. Novarino, M. P. Mentruit, Langmuir
2003, 19, 5708–5721; b) C. Morterra, M. Penarroya Mentruit, G.
Cerrato, Phys. Chem. Chem. Phys. 2002, 4, 676–687.
[14] R. E. Sempels, P. G. Rouxhet, J. ColloidInterface Sci. 1976, 55, 263–
273.
[15] a) A. G. Pelmenschikov, R. A. van Santen, J. Janchen, E. Meijer, J.
Phys. Chem. 1993, 97, 11071–11074; b) Vibrational Spectra of Poly-
atomic Molecules (Eds.: L. M. Sverdlov, M. A. Kovner, E. P. Krai-
nov), Jerusalem, Israel program for Scientific Translations, 1974.
[16] J. C. Lavalley, Catal. Today 1996, 27, 377–401.
[17] a) C. C. Chuang, W. C. Wu, M. X. Lee, J. L. Lin, Phys. Chem. Chem.
Phys. 2000, 2, 3877–3882; b) H. Knoezinger, H. Krietenbrink, H. D.
Mueller, W. Schulz, Proc. Int. Congr. Catal. 1977, 1, 183–194;
c) L. F. Liao, C. F. Lien, D. L. Shieh, F. C. Chen, J. L. Lin, Phys.
Chem. Chem. Phys. 2002, 4, 4584–4589.
[1] a) B. S. Curatolo, R. C. Sentman, G. P. Coffey (Standard Oil Co.),
US Patent 4629776, 1986; b) R. Mohrschladt, V. Hildebrandt (BASF
A.-G.), WO Patent 9943734, 1998; c) D. N. Marks (DuPont), EP
Patent 479306, 1991; d) E. K. Marchildon, A. T. Mutel (DuPont),
WO Patent 2000024808, 1998; e) R. Mohrschladt, H. Winterling, D.
Krauss (BASF A.-G.), DE Patent 19962573, 1995; f) R. Mohrs-
chladt, V. Hildebrandt (BASF A.-G.), WO Patent 9938905, 1998;
g) R. Mohrschladt, D. Krauss, V. Hildebrandt (BASF A.-G.), WO
Patent 9938906, 1998; h) R. Mohrschladt, V. Hildebrandt, E. Fuchs
(BASF A.-G.), WO Patent 9938908, 1998; i) J. D. Cohen, S. B. Fer-
gusson, E. K. Marchildon, D. N. Marks, A. Mutel (DuPont), US
Patent 6437089, 2001; j) C. H. Greenewalt (DuPont), US Patent
2245129, 1938; k) R. Weiss, D. Krauss, D. Keller, G. Pipper, W.
Harder, A. Ludwig, R. Mohrschladt (BASF A.-G.), WO Patent
9808889, 1997; l) H. Liehr (Zimmer A.-G.), US Patent 5627257,
1996; m) D. N. Marks (DuPont), US Patent 5185427, 1991; n) B. S.
Curatolo (Standard Oil Co.), US Patent 4640976, 1985; o) G. P.
Coffey (Standard Oil Co.), US Patent 4603192, 1985; p) B. S. Cura-
tolo (Standard Oil Co.), US Patent 4568736, 1984; q) B. S. Curatolo
(Standard Oil Co.), US Patent 4542205, 1984; r) R. Mohrschladt, H.
Winterling, D. Krauss (BASF A.-G.), DE Patent 19962573, 1996.
[2] Part 1 in this series: A. J. M. Van Dijk, T. Heyligen R. Duchateau J.
Meuldijk, C. E. Koning, Chem. Eur. J. 2007, 13, 10.1002/
chem.200601897).
[18] G. Spoto, A. Zecchina, S. Bordiga, G. Ricchiardi, G. Martra, G. Leo-
fanti, G. Petrini, Appl. Catal. B 1994, 3, 151–172.
[19] H. Knoezinger, H. Krietenbrink, J. Chem. Soc. Faraday Trans. 1975,
71, 2421–2430.
[20] M. A. G. Jansen, PhD Thesis, Eindhoven University of Technology
(The Netherlands), 2005.
[3] a) M. Lasperas, P. Graffin, P. Geneste, J. Catal. 1993, 139, 362–370.
A number of patents consider the gas-phase conversion of an ali-
phatic amino-nitrile into the corresponding N-substituted amide by
using metal oxides, mainly aimed at the synthesis of the correspond-
ing lactams. b) J.-P. Brunelle, C. Nedez (Rhodia), WO Patent
2000004994, 1999; c) H.-J. Buysch, O. Immel, R. Langer (Bayer
A.-G.), DE Patent 19632006, 1996; d) F. Mares (Allied Co.), EP
Patent 150295, 1984; e) M.-C. Cotting, L. Gilbert, N. Laurain, C.
Nedez (RhonÞ Poulenc), WO Patent 9622974, 1996; f) M. Eiermann
Received: December 30, 2006
Revised: March 6, 2007
Published online: June 26, 2007
Chem. Eur. J. 2007, 13, 7673 – 7681
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
7681