972
M. M. Bastos, L. M. U. Mayer, E. C. S. Figueira, M. Soares, W. B. Kover and N. Boechat
Vol 45
Biomedical Frontiers of Fluorine Chemistry, ACS Symposium Series -
American Chemical Society, Washington, DC, 1996, 639; (c) Filler, R.
Organic Chemistry in Medicinal Chemistry and Biomedical
Applications, Elsevier, Amsterdam, 1993; (d) Welch, J. T.;
Eswaraksrishnan, S. Fluorine in Bioorganic Chemistry, Wiley, New
York, NY, 1991; (e) Filler, R.; Kirk, K.; Hudlicky, M.; Pavlath, A. E.
Biological properties of fluorinated compounds. In Chemistry of
Organic Fluorine Compounds II: A Critical Review, ACS Monograph
187: American Chemical Society, Washington, DC, 1995.
[2] (a) Elliot, A. J. Fluorinated pharmaceuticals. In Chemistry of
Organic Fluorine Compounds II, ACS Monograph 187: American
Chemical Society, Washington, DC, 1995; (b) Sholoshonok, V. A.
Enantiocontrolled Synthesis of Organo-Fluorine Compounds:
Stereochemical Challenge and Biomedical Targets, Wiley, New York,
NY, 1999.
[3] (a) Cartwright, D.; Banks, R. E.; Smart, B. E.; Tatlow, J. C.
Recent Developments in Fluorine-Containing Agrochemicals. In
Organofluorine Chemistry: Principles and Commercial Applications,
Plenum, New York, NY, 1994; (b) Lang, R. W. Fluorinated
agrochemicals. In Chemistry of Organic Fluorine Compounds II, ACS
Monograph 187: American Chemical Society, Washington, DC, 1995.
[4] Smart, B. E.; Banks, R. E.; Smart, B. E.; Tatlow, J. C.
Characteristics of C-F systems. In Organofluorine Chemistry: Principles
and Commercial Applications, Plenum, New York, NY, 1994.
[5] (a) O'Hagan, D. O.; Rzepa, H. S. J. Chem. Soc. Chem.
Commun. 1997, 645; (b) Dunitz, J. D.; Taylor, R. Chem. Eur. J. 1997, 3,
89; (c) Howard, J. A. K.; Hoy, V. J.; O'Hagan, D. O.; Smith, G. T.
Tetrahedron. 1996, 52, 12613.
[6] (a) Olah, G. A.; Prakash, G. K. S.; Chambers, R. D. Synthetic
Fluorine Chemistry, Wiley, New York, NY, 1992; (b) Furin, G. G.
Synthetic Aspects of the Fluorination of Organic Compounds, Harward
Academic, London, 1991; (c) McClinton, M. A.; McClinton, D. A.
Tetrahedron. 1992, 48, 6555; (d) Rozen, S. Acc. Chem. Res. 2005, 38,
803.
[7] Prakash, G. K. S.; Yudin, A. K. Chem. Rev. 1997, 97, 757;
(b) Pedrosa, R.; Sayleri, S.; Vicente, M.; Maestro, A.; J. Org. Chem.
2006, 71, 2177.
[8] (a) Silva, J. F. M.; Garden, S. J.; Pinto, A. C. J. Braz. Chem.
Soc. 2001, 12(3), 273; (b) Nair, V.; Ros, S; Jayan, C. N.; Viji, S. 2003,
Synthesis-Stuttgart, 2452; (c) Alcaide, B.; Almendros, P.; Rodriguez-
Acebes, R. J. Org. Chem. 2006, 71, 2346.
[9] Hewlins, M. J. E.; Jacson, A. H.; Oliveira-Campos, A. M.;
Shannon, P. V. R. J. Chem. Soc. Perkin Trans. 1. 1981, 2906.
[10] Katz, A. H.; Demerson, C. A.; Humber, L. G. US 4 670 462,
CA 107:P96704j, 1987.
(1H, m), 3.77 (1H, d, J= 8 Hz), 6.65 (1H, d, J= 8 Hz), 7.24 (1H,
d), 7.26-7.27 (1H, m); 13C NMR (acetone-d6): 34.1, 63.0, 78.4,
109.0, 121.2, 124.1, 124.6, 126.9, 127.2, 130.7, 152.3; 19F NMR
.
(acetone-d6): -80.9; MS (GC) m/z (%): 251 (M+ ).
1,5-Dimethyl-3-(trifluoromethyl)indolin-3-ol (14). Oil.
1
Yield 88%; H NMR (acetone-d6): 2.23 (3H, s), 2.78 (3H, s),
3.38-3.40 (1H, m), 3.64 (1H, d, J= 12 Hz), 5.64 (1H, s), 6.55
(1H, d, J= 8 Hz), 7.05-7.07 (1H, m), 7.13 (1H, s); 13C NMR
(acetone-d6): 20.7, 35.8, 64.4, 79.9, 109.0, 123.4, 125.6, 126.0,
126.7, 127.6, 127.9, 130.1, 132.4, 152.7; 19F NMR (acetone-d6):
.
-80.6. MS (GC) m/z (%): 231 (M+ ).
5-Nitro-1-methyl-3-(trifluoromethyl)indolin-3-ol (15). Oil.
1
Yield 79%; H NMR (acetone-d6): 3.09 (3H, s), 3.77-3.81 (1H,
m), 4.06 (1H, d, J= 12 Hz), 6.70 (1H, d, J= 9 Hz), 8.16 (1H, s),
8.19 (1H, dd, J= 2.5 Hz); 13C NMR (acetone-d6): 33.4, 63.4,
78.6, 106.4, 122.5, 124.8, 126.2, 127.6, 129.7, 138.6, 157.9; 19
F
.
NMR (acetone-d6): -80.7. MS (GC) m/z (%): 262 (M+ ).
General procedure for the synthesis of compounds (16-20).
To a solution of an indolinol derivative (11-15) (1 mol equiv.)
in freshly distilled pyridine (5 mL) was added thionyl chloride
(1.5 mol equiv.), at 0 °C, under a nitrogen atmosphere. After 24
hours at room temperature, an aqueous solution 3 M of HCl (19
mL) was added to the mixture. After extraction with
dichloromethane (3 x 30 mL), the combined organic phases were
washed with brine, dried (MgSO4) and concentrated.
1-Methyl-3-(trifluoromethyl)-1H-indole (16). m.p. 55-57 °C;
1
Yield 98%; H NMR (DMSO-d6): 3.85 (s, 3H), 7.22 (t, J= 7.2
Hz), 7.31 (t, J= 7.2 Hz), 7.57–7.61 (m, 2H); 13C NMR (DMSO-
d6): 32.8, 102.9 (q, J= 36 Hz), 110.9, 118.3, 120.6, 123.3, 125.9,
128.6 (q, J= 265 Hz), 121.1, 122.7, 123.2, 130.2, 136.5; 19 F NMR
.
(DMSO-d6): -54.8. MS (GC) m/z (%): 199 (M+ ).
5-Bromo-1-methyl-3-(trifluoromethyl)-1H-indole (17). m.p.
1
58-60 °C; Yield 98%; H NMR (DMSO-d6): 3.85 (s, 3H), 7.44
(dd, 1H, J= 2,0 Hz e J= 6,8 Hz), 7.58 (d, 1H, J= 8,8 Hz), 7.71
(s, 1H), 8.06 (s, 1H); 13C NMR (DMSO-d6): 33.1, 102.6 (q, J=
36,8 Hz), 113.2, 113.8, 120.2, 122.8, 125.5, 128.1 (q, J= 265
Hz), 120.3, 124.8, 125.3, 131.7, 135.3; 19F NMR (DMSO-d6): -
.
55.0. MS (GC) m/z (%): 277 (M+ ).
5-Chloro-1-methyl-3-(trifluoromethyl)-1H-indole (18).
1
m.p. 59-61 °C; Yield 75%; H NMR (DMSO-d6): 3.85 (s, 3H),
7.33 (dd, 1H, J= 2,0 Hz e J= 6,8 Hz), 7.57 (s, 1H), 7.63 (d, 1H,
J= 8,8 Hz), 8.08 (s, 1H); 13C NMR (DMSO-d6): 33.1, 102.7 (q,
J= 36,6 Hz), 112.8, 117.3, 120.2, 122.8, 125.5, 128.1 (q, J= 264
[11] Katz, A. H.; Demerson, C. A.; Humber, L. G. Eur. Pat. Appl.
EP 238,226, Chem. Abstr. 1987, 109, P6494e.
[12] Katz, A. H.; Demerson, C. A.; Shaw, C. C.; Asselin, A. A.;
Humber, L. G.; Conway, K. M.; Gavin, G.; Guinosso, C.; Jensen, N. P.;
Mobilio, D.; Noureldin, R.; Schmid, J.; Shah, U.; Engen, D. V.; Chau, T.
T.; Weichman, B. M. J. Med. Chem. 1988, 31, 1244.
[13] Demerson, C. A.; Humber, L. G.; Philipp, A. H.; Martel, R.
R. J. Med. Chem. 1976, 19, 391.
[14] Soll, R. M.; Guinosso, C.; Asselin, A. J. Org. Chem. 1988,
53, 2844.
[15] Mirand, C.; Massiot, G.; Lévy, J. J. Org. Chem. 1982, 47,
4169.
[16] Jiang, B.; Smallheer, J. M.; Amaral-Ly, G.; Wuonola, M. A.
J. Org. Chem. 1994, 59, 6823.
[17] Wierenga, W.; Griffin, J.; Warpehoski, M. A. Tetrahedron
Lett. 1983, 24, 2437.
[18] Pinto, A. C.; Silva, F. S. Q.; Silva, R. B. Tetrahedron Lett.
1994, 35, 8923.
Hz), 122.8, 124.1, 125.9, 131.9, 135.1; 19F NMR (DMSO-d6: -
.
55,0. MS (GC) m/z (%): 233 (M+ ).
1,5-Dimethyl-3-(trifluoromethyl)-1H-indole (19). Yield
.
78%. MS (GC) m/z (%): 213 (M+ ).
5-Nitro-1-methyl-3-(trifluoromethyl)-1H-indole (20). m.p.
1
155-156 °C; Yield 70%; H NMR (DMSO-d6): 3.93 (s, 3H),
7.81 (d, 1H, J= 9,5 Hz), 8.17 (dd, 1H, J= 2,0 Hz e 7,0 Hz), 8.30
(s, 1H), 8.42 (s, 1H); 13C NMR (DMSO-d6): 33.4, 105.4, (q, J=
36,7 Hz), 112.0, 114.6, 117.8, 122.2, 122.7, 124.8, 126.9 (q, J=
265 Hz), 134.3, 139.3, 142.1; 19F NMR (DMSO-d6): -55.2. MS
.
(GC) m/z (%): 244 (M+ ).
Acknowledgment. The authors gratefully thank Dr. Solange
M. S. V. Wardell for manuscript revising.
[19] Torres, J. C.; Garden, S. J.; Pinto, A. C.; Silva, F. S. Q.;
Boechat, N. Tetrahedron. 1999, 55, 1881.
REFERENCES
[20] (a) Pindur, U.; Adam, R. J. Heterocycl. Chem. 1988, 25, 1;
(b) Gribble, G. W. Contemp. Org. Syn. 1994, 1, 145; (c) Furstner, A.;
Bogdanovic, B. Angew. Chem. Int. Ed. Engl. 1996, 35, 2442; (d)
Sundberg, R. J. lndoles, Academic Press, San Diego, 1996; (e)
[1] (a) Banks, R. E.; Smart, B. E.; Tatlow, J. C. Organofluorine
Chemistry: Principles and Commercial Applications, Plenum, New
York, NY, 1994, 2; (b) Ojima, I.; McCarthy, J. R.; Welch, J. T.