10.1002/asia.201701176
Chemistry - An Asian Journal
3764; g) S. N. Mlynarski, C. H. Schuster, J. P. Morken, Nature 2014,
505, 386; h) L. Zhang, Z. Zuo, X. Leng, Z. Huang, Angew. Chem. Int.
Ed. 2014, 53, 2696; i) T. Itoh, T. Matsueda, Y. Shimizu, M. Kanai,
Chem. Eur. J. 2015, 21, 15955; j) T. Jia, P. Cao, D. Wang, Y. Lou, J.
Liao, Chem. Eur. J. 2015, 21, 4918; k) N. Matsuda, K. Hirano, T.
Satoh, M. Miura, J. Am. Chem. Soc. 2013, 135, 4934; l) R. Sakae, K.
Hirano, T. Satoh, M. Miura, Angew. Chem. Int. Ed. 2015, 54, 613; m)
K. Kato, K. Hirano, M. Miura, Angew. Chem. Int. Ed. 2016, 55, 14400;
n) X. Jia, Z. Huang, Nat. Chem. 2016, 8,157.
blocks that can be easily transformed into a variety of important
molecules. Chiral α-quaternary homopropargylboronate was
obtained by using hindered 1, 1-disubstituted alkene. this reaction
provides an efficient method to construct chiral quaternary carbon.
Moreover, this reaction presents the first example of
macro-sized-ring synthesis in carboboration.
(6) For selected examples of intramolecular carboboration of alkenes, see:
a) H. Ito, Y. Kosaka, K. Nonoyama, Y. Sasaki, M. Sawamura, Angew.
Chem., Int. Ed. 2008, 47, 7424; b) H. Ito, T. Toyoda, M. Sawamura, J.
Am. Chem. Soc. 2010, 132, 5990; c) C. Zhong, S. Kunii, Y. Kosaka, M.
Sawamura, H. Ito, J. Am. Chem. Soc. 2010, 132, 11440; d) A. R. Burns,
J. S. Gonzalez, H. W. Lam, Angew. Chem., Int. Ed. 2012, 51, 10827; e)
K. Kubota, E. Yamamoto, H. Ito, J. Am. Chem. Soc. 2013, 135, 2635.
(7) For selected examples of intermolecular carboboration of alkenes, see:
a) H. Yoshida, I. Kageyuki, K. Takaki, Org. Lett. 2013, 15, 952; b) K.
Semba, Y. Nakao, J. Am. Chem. Soc. 2014, 136, 7567; c) K. B. Smith,
K. M. Logan, W. You, M. K. Brown, Chem. Eur. J. 2014, 20, 12032;
d) K. M. Logan, K. B. Smith, M. K. Brown, Angew. Chem., Int. Ed.
2015, 54, 5228; e) T. Jia, P. Cao, B. Wang, Y. Lou, X. Yin, M. Wang, J.
Liao, J. Am. Chem. Soc., 2015, 137, 13760; f) W. Su, T.-J. Gong, X. Lu,
M.-Y. Xu, C.-G. Yu, Z.-Y. Xu, H.-Z. Yu, B. Xiao, Y. Fu, Angew.
Chem., Int. Ed. 2015, 54, 12957; g) Y. Yang, S. L. Buchwald, Angew.
Chem. Int. Ed. 2014, 53, 8677; h) Y. Yang, Angew. Chem. Int. Ed.
2016, 55, 345; i) K. Semba, Y. Ohtagaki, Y. Nakao, Org. Lett. 2016, 18,
3956; j) X. Li, F. Meng, S. Torker, Y. Shi, A. H. Hoveyda, Angew.
Chem., Int. Ed. 2016, 55, 9997; k) L. Jiang, P. Cao, M. Wang, B. Chen,
B. Wang, J. Liao, Angew. Chem. Int. Ed. 2016, 55, 13854; l) K. Yang,
Q. Song, Org. Lett. 2016, 18, 5460; m) K. Yang, Q. Song, J. Org.
2017, 139, 7721; o) H. M. Nelson, B. D. Williams, J. Miro, F. D. Toste,
J. Am. Chem. Soc. 2015, 137, 3213.
Scheme 6. Possible Reaction Mechanism.
Received: ((will be filled in by the editorial staff))
Published online on ((will be filled in by the editorial staff))
Keywords: boration • synthetic methods • copper • difunctionalization
• cross-coupling
(8) a) F. Meng, F. Haeffner, A. H. Hoveyda, J. Am. Chem. Soc. 2014, 136,
11304; b) Y. Sasaki, Y. Horita, C. Zhong, M. Sawamura, H. Ito, Angew.
Chem. Int. Ed. 2011, 50, 2778; c) C. A. Brown, R. A. Coleman, J. Org.
Chem. 1979, 44, 2328.
(1) a) R. Jana, T. P. Pathak, M. S. Sigman, Chem. Rev. 2011, 111, 1417; b)
D. Leonori, V. K. Aggarwal, Acc. Chem. Res. 2014, 47, 3174; c) N.
Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457; d) S. N. Mlynarski, A.
S. Karns, J. P. Morken, J. Am. Chem. Soc. 2012, 134, 16449; e) A.
Bonet, M. Odachowski, D. Leonori, S. Essafi, V. K. Aggarwal, Nat.
Chem. 2014, 6, 584; f) L. Li, S. Zhao, A. Joshi-Pangu, M. Diane, M. R.
Biscoe, J. Am. Chem. Soc. 2014, 136, 14027; g) J. C. Tellis, D. N.
Primer, G. A. Molander, Science 2014, 345, 433; h) L. J. Milo, Jr., J. H.
Lai, W. Wu, Y. Liu, H. Maw, Y. Li, Z. Jin, Y. Shu, S. E. Poplawski, Y.
Wu, D. G. Sanford, J. L. Sudmeier, W. W. Bachovchin, J. Med. Chem.
2011, 54, 4365.
(2) a) Boronic Acids: Preparation and Applications in Organic Synthesis
and Medicine (Ed.: D. G. Hall), Wiley-VCH, Weinheim, 2005; b) K.
Burgess, M. J. Ohlmeyer, Chem. Rev. 1991, 91, 1179; c) I. A. I.
Mkhalid, J. H. Barnard, T. B. Marder, J. M. Murphy, J. F. Hartwig,
Chem. Rev. 2010, 110, 890.
(3) a) H. Y. Chen, S. Schlecht, T. C. Semple, J. F. Hartwig, Science 2000,
287, 1995; b) C.-T. Yang, Z.-Q. Zhang, Y.-C. Liu, L. Liu, Angew.
(4) Recent reviews: a) M. Suginome, Chem. Rec. 2010, 10, 348; b) J. Yun,
Asian J. Org. Chem. 2013, 2, 1016; c) Y. Shimizu, M. Kanai,
Tetrahedron Lett. 2014, 55, 3727; d) K. Semba, T. Fujihara, J. Terao, Y.
Tsuji, Tetrahedron, 2015, 71, 2183; e) Y. Tsuji, T. Fujihara, Chem. Rec.
2016, 16, 2294; f) E. C. Neeve, S. J. Geier, I. A. Mkhalid, S. A.
Westcott, T. B. Marder, Chem. Rev. 2016, 116, 9091.
(9) a) Acetylene Chemistry: Chemistry, Biology and Material Science, F.
Diederich, P. J. Stang, R. R. Tykwinski, Eds., Wiley-VCH: Weinheim,
Germany, 2005; b) M. G. Finn, V. V. Fokin, Chem. Soc. Rev. 2010, 39,
1231; c) J. P. Brand, J. Waser, Chem. Soc. Rev. 2012, 41, 4165; d) R.
Chong, J. Am. Chem. Soc., 2005, 127, 3244.
(10) For selected examples of C(sp)-C(sp3) cross-coupling: a) M. Eckhardt,
G. C. Fu, J. Am. Chem. Soc. 2003, 125, 13642; b) H. Bi, L. Zhao, Y.
Liang, C. Li, Angew. Chem., Int. Ed. 2009, 48, 792; c) S. Nicolai, C.
Piemontesi, J. Waser, Angew. Chem., Int. Ed. 2011, 50, 4689; d) O.
Vechorkin, A. Godinat, R. Scopelliti, X. Hu, Angew. Chem., Int. Ed.
2011, 50, 11981; e) Y. Ano, M. Tobisu, N. Chatani, J. Am. Chem. Soc.
2011, 133, 12984; f) J. He, M. Wasa, K. S. L. Chan, J.-Q. Yu, J. Am.
Chem. Soc. 2013, 135, 3387; g) F. Ye, X. Ma, Q. Xiao, H. Li, Y. Zhang,
J. Wang, J. Am. Chem. Soc. 2012, 134, 5742; h) J. Yi, X. Lu, Y.-Y. Sun,
B. Xiao, L. Liu, Angew. Chem., Int. Ed. 2013, 52, 12409; i) H. Fu, P.-X.
Shen, J. He, F. Zhang, S. Li, P. Wang, T. Liu, J.-Q. Yu, Angew. Chem.
Int. Ed. 2017, 56, 1873
(11) Y. Yang, I. B. Perry, G. Lu, P. Liu, S. L. Buchwald, Science 2016, 353,
144.
(12) a) A. Pathigoolla, R. P. Pola, K. M. Sureshan, Applied Catalysis A:
General, 2013, 453, 151; b) M. Cowart, R. Faghih, M. P. Curtis, G. A.
Gfesser, Y. L. Bennani, L. A. Black, L. Pan, K. C. Marsh, J. P. Sullivan,
T. A. Esbenshade, G. B. Fox, A. A. Hancock, J. Med. Chem. 2005, 48,
N. Krause, Org. Lett. 2006, 8, 4489; e) S. Li, S. Ma, Org. Lett., 2011,
13, 6046.
(13) a) M. K. Brown, T. L. May, C. A. Baxter, A. H. Hoveyda, Angew.
Chem. Int. Ed. 2007, 46, 1097; b) K. M. Logan, M. K. Brown, Angew.
Chem. Int. Ed. 2012, 51, 2717.
(5) a) R. T. Baker, P. Nguyen, T. B. Marder, S. A. Westcott, Angew. Chem.
Int. Ed. 1995, 34, 1336; b) Suginome, M.; Nakamura, H.; Ito, Y.
Angew. Chem., Int. Ed. 1997, 36, 2516; c) Y. Lee, A. H. Hoveyda, J.
Am. Chem. Soc. 2009, 131, 3160; d) L. T. Kliman, S. N. Mlynarski, J.
P. Morken, J. Am. Chem. Soc. 2009, 131, 13210; e) R. Corberán, N. W.
Mszar, A. H. Hoveyda, Angew. Chem. Int. Ed. 2011, 50, 7079; f) L.
Zhang, D. Peng, X. Leng, Z. Huang, Angew. Chem. Int. Ed. 2013, 125,
(14) A. Bonet, C. Pubill-Ulldemolins, C. Bo, H. Gulyás, E Fernández,
Angew. Chem. Int. Ed. 2011, 50, 7158.
(15) M. Suginome, M. Shirakura, A. Yamamoto, J. Am. Chem. Soc. 2006,
128, 14438.
(16) D. S. Laitar, E. Y. Tsui, J. P. Sadighi, Organometallics 2006, 25, 2405.
4
This article is protected by copyright. All rights reserved.