O
O
MeO
HO
OMe
MeO
RO
OMe
11
O
O
17
O
i
iii
O
9
O
BzO
O
11
8
9 R = H
10 R = Bz
CO2H
ii
23
iv
OSiEt3
OH
11
OR
A closely related natural product (CP-263,114, 23) was
isolated along with CP-225,917, and found to have similar
biological properties, although of a lower potency with respect
to squalene synthase inhibition. The present work is, of course,
equally relevant to the synthesis of the congener.
All new compounds, except 11, one epimer of 16, 17 and the
C(11) epimer of 12, were satisfactorily characterized by
spectroscopic methods, including high resolution mass spec-
troscopic measurements.
Acknowledgment is made to the Natural Sciences and
Engineering Research Council of Canada for financial support,
and we thank Dr Yunxin Bo for advice. P. W. M. S. held a
Graduate Scholarship from CNPq (Brazil).
vi
viii
O
ix
O
OR
RO
14 R = H
15 R = SiEt3
16 R = H
17 R = Ms
x
12 R = Bz
13 R = H
vii
v
OSiEt3
OSiEt3
14
xi
O
HO
18
19
OR
OR
xii
Footnotes and References
+
BnO
* E-mail: derrick.clive@ualberta.ca
† We use the non-systematic numbering given in ref. 2.
‡ For recent examples of the preparation of bicyclic systems by anionic oxy-
Cope rearrangement, see ref. 10.
§ We have not yet explored the possibility of conjugate addition for
introducing what will eventually be the second substituent at the quaternary
centre [C(14)].
BnO
20a R = SiEt3
21a R = H
20b R = SiEt3
21b R = H
xiii
xiii
xiv
xiv
OBn
BnO
O
O
1 T. T. Dabrah, H. J. Harwood, L. H. Huang, N. D. Jankovich, T. Kaneko,
J.-C. Li, S. Lindsey, P. M. Moshier, T. A. Subashi, M. Therrien and
P. C. Watts, J. Antibiot., 1997, 50, 1.
H
H
2 T. T. Dabrah, T. Kaneko, W. Massefski, Jr. and E. B. Whipple, J. Am.
Chem. Soc., 1997, 119, 1594.
Me
Me
22a
22b
3 E.g. J. E. Baldwin, D. H. R. Barton and J. K. Sutherland, J. Chem. Soc.,
1965, 1787 and earlier papers in the series; J. K. Sutherland, Fortschr.
Chem. Org. Naturst., 1967, 25, 131.
Scheme 2 Reagents and conditions: i, H2, 10% Pd–C, MeOH, room temp.,
ca. 5 h, 92%; ii, BzCl, pyridine, room temp., 10 h, 98%; iii, 6:1 AcOH–
H2O, 150 °C, 40 min; iv, H2CNCHMgBr, Et2O, 0 °C, 40 min; v, LiOH·H2O,
9:1 THF–H2O, 80 °C, 12 h, 53% over 3 steps [44% for 13, 9% for C(11)
isomer of 13]; vi, Dess–Martin periodinane, 33:1 CH2Cl2–DMSO, room
temp., 12 h, 93%; vii, Et3SiOSO2CF3, 2,6-lutidine, CH2Cl2, room temp.,
1 h, 84%; viii, LDA, THF, 278 °C, 1 h, then MeCHO, 278 °C, 1 h; ix,
MeSO2Cl, Et3N, CH2Cl2, 0 °C; x, DBU, THF, room temp., 1 h, 71% over
3 steps [60% isolated yield of (E)-alkene and 11% isolated yield of
(Z)-alkene]; xi, NaBH4, CeCl3·7H2O, MeOH, room temp., 1.5 h, 86%
(endo-19, 42%; exo-19, 44%); xii, BnBr, NaH, THF, 70 °C, 24 h, 94% for
20a, 70% for 20b; xiii, Bu4NF, THF, room temp., 2 min, 89% for 21a, 89%
for 21b; xiv, (Me3Si)2NK, PhMe, 100 °C, 20 h, 95% for 22a, 82% for
22b
4 N. S. Watson and P. A. Procopiou, Prog. Med. Chem., 1996, 33, 331.
5 S. B. Singh, J. M. Liesch, R. B. Lingham, M. A. Goetz and J. B. Gibbs,
J. Am. Chem. Soc., 1994, 116, 11 606 and references cited therein.
6 J. D. Bergstrom, M. M. Kurtz, D. J. Rew, A. M. Amend, J. D. Karkas,
R. G. Bostedor, V. S. Bansal, C. Dufresne, F. L. VanMiddlesworth,
O. D. Hensens, J. M. Liesch, D. L. Zink, K. E. Wilson, J. Onishi,
J. A. Milligan, G. Bills, L. Kaplan, M. Nallin Omstead, R. G. Jenkins,
L. Huang, M. S. Meinz, L. Quinn, R. W. Burg, Y. L. Kong, S. Mochales,
M. Mojena, I. Martin, F. Pelaez, M. T. Diez and A. W. Alberts, Proc.
Natl. Acad. Sci. USA, 1993, 90, 80; J. L. Goldstein and M. S. Brown,
Nature, 1990, 343, 425.
7 B. G. Cordiner, M. R. Vegar and R. J. Wells, Tetrahedron Lett., 1970,
2285; cf. H. O. House and T. V. Lee, J. Org. Chem., 1979, 44, 2819.
8 Cf. K. C. Nicolaou, M. W. Ha¨rter, L. Boulton and B. Jandeleit, Angew.
Chem., Int. Ed. Engl., 1997, 36, 1194.
9 Cf. H. M. L. Davies, R. Calvo and G. Ahmed, Tetrahedron Lett., 1997,
38, 1737.
10 S. F. Martin, J.-M. Assercq, R. E. Austin, A. P. Dantanarayana,
J. R. Fishpaugh, C. Gluchowski, D. E. Guinn, M. Hartmann, T. Tanaka,
R. Wagner and J. B. White, Tetrahedron, 1995, 51, 3455; L. A.
Paquette, Chem. Soc. Rev., 1995, 24, 9.
11 L. N. Mander and S. P. Sethi, Tetrahedron Lett., 1983, 24, 5425.
12 L. A. Paquette, K. S. Learn, J. L. Romine and H.-S. Lin, J. Am. Chem.
Soc., 1988, 110, 879.
13 Cf. G. Mehta and F. Ahmad Khan, J. Am. Chem. Soc., 1990, 112, 6140;
G. Mehta, F. Ahmad Khan, B. Ganguly and J. Chandrasekhar, J. Chem.
Soc., Perkin Trans. 2, 1994, 2275.
14 R. E. Ireland and L. Liu, J. Org. Chem., 1993, 58, 2899.
15 Cf. L. A. Paquette and M.-A. Poupart, J. Org. Chem., 1993, 58, 4245.
MeOH, CeCl3·7H2O; 86%) gave a 1:1 mixture of endo- (42%
isolated yield) and exo-alcohols (44%), which were easily
separated and individually protected by benzylation (endo-
19?20a, 94%; exo-19?20b, 70%). At this point, desilylation
of both 20a and 20b was accomplished under standard
conditions (Bu4NF, THF, room temperature; 89% for each
compound) and finally, the resulting alcohols were subjected to
anionic oxy-Cope rearrangement [(Me3Si)2NK, PhMe, 100 °C,
ca. 20 h]. endo-Benzyl ether 21a gave the bridgehead keto
alkene 22a (95%) and the exo isomer (21b) gave 22b (82%),
1
whose structures were confirmed by extensive H–1H COSY
and ROESY NMR measurements. In neither case was the rate of
oxy-Cope rearrangement noticeably increased by addition of
18-crown-6.
Formation of 22a and 22b (which is crystalline) serves as an
initial test of the plan summarized in Scheme 1.
Received in Corvallis, OR, USA, 18th August 1997; 7/06075K
2158
Chem. Commun., 1997