Acknowledgments
18. Mao, J. Wang, Y. Wan, B. Kozikowski, A. P. Franzblau, S.G.
Design, Synthesis, and Pharmacological Evaluation of
Mefloquine-Based Ligands as Novel Antituberculosis Agents,
Chem. Med. Chem. 2007, 2, 1624-1630.
BT thanks UGC, New Delhi for the award of RGNF Senior
Research Fellowship.
1
9. Lilienkampf, A. Mao, J. Wan, B. Wang, Y. Franzblau, S.G.
Kozikowski, A.P. Structure−Activity Relationships for a Series of
Quinoline-Based Compounds Active against Replicating and
Nonreplicating Mycobacterium tuberculosis J. Med. Chem. 2009,
Supplementary Material
5
2, 2109-2118.
Detailed general experimental procedures and scanned
spectra ( H and C) of all the compounds are included in the
supporting information.
2
0. Mao, J. Yuan, H. Wang, Y. Wan, B. Pak, D. He, R. Franzblau,
S.G. Synthesis and antituberculosis activity of novel mefloquine-
isoxazole carboxylic esters as prodrugs, Bioorg. Med. Chem. Lett.
1
13
2
010, 20, 1263-1268.
2
1. Goncalves, R.S., Kaiser, C.R. Lourenco, M.C. de Souza, M.V.
Wardell, J.L. Wardell, S.M. da Silva, A.D. Synthesis and
antitubercular activity of new mefloquine-oxazolidine derivatives,
Eur. J. Med. Chem. 2010, 45, 6095-6100.
References and notes
1
.
Forrellad, M.A. Klepp, Gioffré, L.I. A. J.g.y sabio, H.R.
Morbidoni, de la M. M.S.P. Cataldi, A.A. Bigi, F. Virulence
factors of the Mycobacterium tuberculosis complex, Virulence 4,
22. Eswaran, S. Adhikari, A.V. Ajay Kumar, R. New quinoline
derivatives: synthesis and investigation of antibacterial and
antituberculosis properties, Eur. J. Med. Chem. 2010, 45, 3374-
3383.
23. Moadebi, S. Harder, C.K. Fitzgerald, M.J. Elwood, K.R. Marra, F.
Fluoroquinolones for the Treatment of Pulmonary Tuberculosis,
Drugs 2007, 67, 2077-2099.
24. Maddry, J. A. Ananthan, S. Goldman, R.C. Hobrath, J.V. Kwong,
C.D. Maddox, C. Rasmussen, L. Reynolds, R.C. Secrist III, J.A.
Sosa, M.I. White, E.L. Zhang, W. Antituberculosis Activity of
the Molecular Libraries Screening Center Network Library,
Tuberculosis 2009, 89, 354-363.
2
013, 3-66.
2
3
.
.
Geneva: World Health Organization. Apr 23, 1993;
WHO/31.URL:http://www.who.int/tb/challenges/mdr/en/index.ht
ml. (WHO/HTM/TB/2015.6)
Grover, G.S. Takkar, J. Recent advances in multi-drug-resistant
tuberculosis and RNTCP, Ind. J. Community Med., 2008, 33, 219-
2
23.
4
5
.
.
Raviglione, M.C. The TB epidemic from 1992 to 2002,
Tuberculosis, 2003, 834-14.
Da Silva, P.E.A. Palomino, J.C. Molecular basis and mechanisms
of drug resistance in Mycobacterium tuberculosis: classical and
new drugs, J. Antimicrob. Chemother. 2011, 66, 1417-1430.
K. Duncan, Identification and validation of novel drug targets in
tuberculosis, Curr. Pharm. Des. 2004, 10, 3185-3194.
Candéa, A.L.P. Ferreira, M.D.L. Pais, K.C. Cardoso, L.N.D.F.
Kaiser, C.R. Henriques, M.D.G.M. D.O. Lourenço, M.C.S.
Bezerra, F.A.F.M. Souza, M.V.N.D. Synthesis and antitubercular
activity of 7-chloro-4-quinolinylhydrazones derivatives, Bioorg.
Med. Chem. Lett., 2009, 19, 6272-6274.
25. Suresh, N. Nagesh, H.N. Renuka, J. Rajput, V. Sharma, R. I.
Khan, A. Gowri, C.S.K.V. Synthesis and evaluation of 1-
6
7
.
.
cyclopropyl-6-fluoro-1,
4-dihydro-4-oxo-7-(4-(2-(4-
substitutedpiperazin-1-yl) acetyl) piperazin-1-yl) quinoline-3-
carboxylic acid derivatives as anti-tubercular and antibacterial
agents, Eur. J. Med. Chem. 2014, 71, 324-332.
26. FDA
news
release.
/ucm333695.html (accessed Dec 12, 2014).
8
9
.
.
Bermudez, L.E. Kolonoski, P. Wu, M. Aralar, P.A. Inderlied, C.B.
Young, L.S. Mefloquine Is Active In Vitro and In Vivo against
Mycobacterium avium Complex, Antimicrob. Agents Chemother.
27. Koul, A. Dendouga, N. Vergauwen, K. Molenberghs, B. Vranckx,
L. Willebrords, R. Ristic, Z. Lill, H. Dorange, I. Guillemont, J.
Bald, D. Koen, A. Diarylquinolines target subunit
c of
1
999, 43, 1870-1874.
mycobacterial ATP synthase, Nat. Chem. Biol. 2007, 3, 323–324.
28. Y.S. Kwona, B.H. Jeongb, W.J. Koh, Tuberculosis: Clinical Trials
and New Drug Regimens, Curr. Opin. Pulm. Med. 2014, 20, 280-
286.
Ananthan, S. Faaleolea, E.R. Goldman, R.C. Hobrath, J.V.
Kwong, C.D. Laughon, B.E. J.A. Maddry, A. Mehta, L.
Rasmussen, R.C. Reynolds, J.A. Secrist III, N. Shindo, D.N.
Showe, M.I. Sosa, W.J. Suling, E.L. White. High Throughput
Screening for Inhibitors of Mycobacterium tuberculosis H37Rv,
Tuberculosis, 2009, 89, 334-353.
29. Bergmann, K.E. Cynamon, M.H. Welch, J.T. Quantitative
Structure−Activity
Relationships
for
the
in
Vitro
Antimycobacterial Activity of Pyrazinoic Acid Esters, J. Med.
Chem. 1996, 39, 3394-3400.
1
0. Eswaran, S. Adhikari, A.V. Kumar, A.R. New 1,3-oxazolo[4,5-
c]quinoline derivatives: synthesis and evaluation of antibacterial
and antituberculosis properties, Eur. J. Med. Chem. 2010, 45, 957-
30. Seitz, L.E. Suling, W.J. Reynolds, R.C. Synthesis and
Antimycobacterial Activity of Pyrazine and Quinoxaline
Derivatives, J. Med. Chem. 2002, 45, 5604-5606.
9
66.
1
1. Nava-Zuazo, C. Estrada-Soto, S. Guerrero-Álvarez, J. León-
Rivera, I. Molina-Salinas, G.M. Said-Fernández, S. Chan-Bacab,
M.J. Cedillo-Rivera, R. Moo-Puc, R. Mirón-López, G. Navarrete-
Vazquez, G. Design, synthesis, and in vitro antiprotozoal,
antimycobacterial activities of N-{2-[(7-chloroquinolin-4-
yl)amino]ethyl}ureas, Bioorg. Med. Chem. Lett. 2010, 18, 6398-
31. Chung, W.J. Kornilov, A. Brodsky, B.H. Higgins, M. Sanchez, T.
Heifets, L.B. Cynamon, M.H. Welch, J. Inhibition of M.
tuberculosis in vitro in monocytes and in mice by aminomethylene
pyrazinamide analogs, Tuberculosis 2008, 88, 410-419.
32. Simoes, M.F. Valente, E. Gomez, M.J.R. Anes, E. Constantino, L.
Lipophilic pyrazinoic acid amide and ester prodrugs: Stability,
activation and activity against M. Tuberculosis, Eur. J. Pharm.
Sci. 2009, 37, 257-263.
6
403.
2. Lilienkampf, A. Pieroni, M. Wan, B. Wang, Y. Franzblau, S.G.
A.P. Kozikowski, Rational Design of 5-Phenyl-3-
1
33. Zitko, J. Dolezal, M. Svobodova, M. Vejsova, M. Kunes, J.
isoxazolecarboxylic Acid Ethyl Esters as Growth Inhibitors of
Mycobacterium tuberculosis. A Potent and Selective Series for
Further Drug Development, J. Med. Chem. 2010, 53, 678-688.
3. Thomas, K.D. Adhikari, A.V. Chowdhury, I.H. Sumesh, E. Pal,
N.K. New quinolin-4-yl-1,2,3-triazoles carrying amides,
sulphonamides and amidopiperazines as potential antitubercular
agents, Eur. J. Med. Chem. 46, 2011, 2503-2512.
Kucera, R. Jilek, P. Synthesis and antimycobacterial properties of
N-substituted
6-amino-5-cyanopyrazine-2-carboxamides,
Bioorganic Med. Chem. 2011, 19, 1471-1476.
1
34. Bispo, M.D.L.F. Gonçalves, R. S. B. Lima, C.H.D.S. Cardoso,
L.N.D.F. Lourenço, M.C.S. Souza, M.V.N.D. Synthesis and
Antitubercular Evaluation of N-Arylpyrazine and N,N′-Alkyl-
diylpyrazine-2-carboxamide Derivatives, J. Heterocyclic Chem.
2012, 49, 1317-1322.
14. Nagesh, H.N. Suresh, N. Naidu, K.M. Arun, B. Sridevi, J.P.
Sriram, D. Yogeeswari, P. K.V.G.C. Sekhar, Eur. J. Med. Chem.
35. Zitko, J. Paterová, P. Kubícek, V. Mandíková, J. Trejtnar, F.
Kuneš, J. Dolezal, M. Synthesis and antimycobacterial evaluation
of pyrazinamide derivatives with benzylamino substitution,
Bioorg. Med. Chem. Lett. 2013, 23, 476-479.
2
014, 74, 333-339.
1
5. Ganihigama, D. U. Sureram, S. Sangher, S. Hongmanee, P. Aree,
T. Mahidol, C. Ruchirawat, S. Kittakoop, P. Eur. J. Med. Chem.
2
015, 89, 1-12.
36. Shah, P. Dhameliya, T.M. Bansal, R. Nautiyal, M. Kommi, D.N.
1
6. Medapi, B. Suryadevara, P. Renuka, J. Sridevi J.P. Yogeeswari, P.
Jadhavar, P. S.
Sridevi, J.P. Yogeeswari, P. Sriram, D.
Sriram, D. Eur. J. Med. Chem. 2015, 103, 1-16.
7. Jayaprakash, S. Iso, Y. Wan, B. Franzblau, S.G. Kozikowski, A.P.
Chem. Med. Chem. 2006, 1, 593-597.
Chakraborti, A.K. N-Arylalkylbenzo [d] thiazole-2-carboxamides
as anti-mycobacterial agents: design, new methods of synthesis
and biological evaluation, Med. Chem. Commun. 2014, 5, 1489-
1
1
495.