¨
SOLVENT-FREE FRIEDLANDER ANNULATION
127
1
1
0. Jegou, G.; Jenekhe, S. A. Highly fluorescent poly(arylene ethynylene)s containing quino-
line and 3-alkylthiophene. Macromolecules 2001, 34, 7926–7928.
1. Cho, C. S.; Kim, B. T.; Kim, T. J.; Shim, S. C. Ruthenium-catalysed oxidative cyclisation
of 2-aminobenzyl alcohol with ketones: Modified Friedlaender quinoline synthesis. Chem.
Commun. 2001, 24, 2576–2577.
1
1
1
2. McNaughton, B. R.; Miller, B. L. A mild and efficient one-step synthesis of quinolines.
Org. Lett. 2003, 5, 4257–4259.
3. Ranu, B. C.; Hajra, A.; Dey, S. S.; Jana, U. Efficient microwave-assisted synthesis of quino-
lines and dihydroquinolines under solvent-free conditions. Tetrahedron 2003, 59, 813–819.
4. Cho, C. S.; Kim, B. T.; Choi, H. J.; Kim, T. J.; Shim, S. C. Ruthenium-catalyzed oxidative
coupling and cyclization between 2-aminobenzyl alcohol and secondary alcohols leading
to quinolines. Tetrahedron 2003, 59, 7997–8002.
1
5. Motokura, K.; Mizugaki, T.; Ebitaniu, K.; Kaneda, K. Multifunctional catalysis of a
ruthenium-grafted hydrotalcite: One-pot synthesis of quinolines from 2-aminobenzyl alco-
hol and various carbonyl compounds via aerobic oxidation and aldol reaction. Tetra-
hedron Lett. 2004, 45, 6029–6032.
¨
1
6. Friedl a¨ nder, P. Uber o-Amidobenzaldehyd. Chem. Ber. 1882, 15, 2572–2575.
17. Song, S. J.; Cho, S. J.; Park, D. K.; Kwon, T. W.; Jenekhe, S. A. Microwave enhanced
solvent-free synthesis of a library of quinoline derivatives. Tetrahedron Lett. 2003, 44,
255–257.
1
1
8. Haudhuri, M. K.; Sahid, H. An efficient synthesis of quinolines under solvent-free con-
ditions. J. Chem. Sci. 2006, 118, 199–202.
9. Jia, C. S.; Zhang, Z.; Tu, S. J.; Wang, G. W. Rapid and efficient synthesis of
poly-substituted quinolines assisted by p-toluene sulphonic acid under solvent-free con-
ditions: Comparative study of microwave irradiation versus conventional heating. Org.
Biomol. Chem. 2006, 4, 104–110.
2
2
2
0. Mogilaiah, K.; Rama Sudhakar, G. PTSA-catalyzed Friedlander condensation in the
solid state. Indian J. Chem. Sect. B 2003, 42, 1170–1171.
1. Wu, J.; Xia, H. G.; Gao, K. Molecular iodine: A highly efficient catalyst in the synthesis
of quinolines via Friedlander annulation. Org. Biomol. Chem. 2006, 4, 126–129.
2. Varala, R.; Enugala, R.; Adapa, S. R. Efficient and rapid Friedlander synthesis of func-
tionalized quinolines catalyzed by neodymium(III) nitrate hexahydrate. Synthesis 2006,
22, 3825–3830.
2
2
3. Dormer, P. G.; Eng, K. K.; Farr, R. N.; Humphrey, G. H.; McWilliams, J. C.; Reider, P.
J.; Sager, J. W.; Volante, R. P. Highly regioselective Friedlander annulations with unmo-
dified ketones employing novel amine catalysts: Syntheses of 2-substituted quinolines,
1,8-naphthyridines, and related heterocycles. J. Org. Chem. 2003, 68, 467–477.
4. Yadav, J. S.; Reddy, B. V. S.; Sreedhar, P.; Rao, R. S.; Nagaiah, K. Silver phosphotung-
state: A novel and recyclable heteropoly acid for Friedlander quinoline synthesis.
Synthesis 2004, 14, 2381–2385.
25. Zhang, L.; Wua, J. Friedlaender synthesis of quinolines using a lewis acid–surfactant com-
bined catalyst in water. Adv. Synth. Catal. 2007, 349, 1047–1051.
2
6. Wang, G. W.; Jia, C. S.; Dong, Y. W. Benign and highly efficient synthesis of quinolines
from 2-aminoarylketone or 2-aminoarylaldehyde and carbonyl compounds mediated by
hydrochloric acid in water. Tetrahedron Lett. 2006, 47, 1059–1063.
27. Das, B.; Damodar, K.; Chowdhury, N.; Kumar, R. A. Application of heterogeneous solid
acid catalysts for Friedlander synthesis of quinolines. J. Mol. Catal. A. Chem. 2007, 274,
148–152.
28. Narasimhulu, M.; Reddy, T. S.; Mahesh, K. C.; Prabhakar, P.; Rao, C. B.;
Venkateswarlu, Y. Silica supported perchloric acid: A mild and highly efficient