2824
H. N. Borah et al.
LETTER
iodides are known to react readily under the normal Sono-
gashira coupling condition and were found to be equally
reactive in the present case (entries 1, 7, 9). However, aryl
chlorides or bromides are available in far greater number
and their use is more economical. We therefore used a
variety of aryl chlorides, aryl bromides, or aryl fluorides
for the coupling reactions and they were also found to be
equally effective in terms of yields (Table 1). Yields were
not affected drastically due to the presence of either elec-
tron-donating or electron-withdrawing groups on the aryl
ring of the aryl halides. The coupling reaction between
terminal alkynes and a number of aryl iodides was readily
accomplished on a 1-mmol scale using 1 mol% of InCl3.
Approximately 0.1 equivalent of indium(III) chloride was
found to be sufficient for these reactions to proceed and
use of a large excess did not lead to either better yields or
faster reaction rates. The reaction conditions provided
highly reproducible yields in short reaction times.
References
(1) (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron
Lett. 1975, 16, 4467. (b) For a review see: de Meijere, A.;
Meyer, F. E. Angew. Chem., Int. Ed. Engl. 1994, 33, 2379.
(2) (a) Grahm, A. E.; Mickerrecher, D.; Davies, D. H.; Taylor,
R. J. K. Tetrahedron Lett. 1996, 37, 7445. (b) Miller, M.
W.; Johnson, C. R. J. Org. Chem. 1997, 62, 1582.
(c) Sakai, A.; Aoyama, T.; Shioiri, T. Tetrahedron Lett.
1999, 40, 4211. (d) Yoshimura, F.; Kawata, S.; Hirama, M.
Tetrahedron Lett. 1999, 40, 8281. (e) Toyota, M.; Komori,
C.; Ihara, M. J. Org. Chem. 2000, 65, 7110. (f) Paterson, I.;
Davies, R. D.; Marquez, R. Angew Chem. Int. Ed. 2001, 40,
603. (g) Nicolaou, K. C.; Dai, W. M. Angew Chem., Int. Ed.
Engl. 1992, 30, 1387. (h) Grissom, J. W.; Gunawardena, G.
U.; Klingberg, D.; Huang, D. Tetrahedron 1996, 52, 6453.
(i) Wa, R.; Schumm, J. S.; Pearson, D. L.; Tour, J. M. J. Org.
Chem. 1996, 67, 6906. (j) Tour, J. M. Acc. Chem. Res. 2002,
33, 791. (k) Bunz, U. H. F. Chem. Rev. 2000, 100, 1605.
(3) (a) Alami, M.; Ferri, F.; Linstrumelle, G. Tetrahedron Lett.
1993, 34, 6403. (b) Bohm, V. P. W.; Herrmann, W. A. Eur.
J. Org. Chem. 2000, 3679. (c) Fu, X.; Zhang, S.; Yin, J.;
Schumacher, D. P. Tetrahedron Lett. 2002, 43, 6673.
(d) Pal, M.; Parasuraman, K.; Gupta, S.; Yelevwarapu, K. R.
Synlett 2002, 1976. (e) Mery, D.; Heuze, K.; Astrue, D.
Chem. Commun. 2003, 1934.
Table 1 Indium-Catalyzed Sonogashira Coupling Reaction
Entry
1
ArX
Time (h) Product
Yield (%)
80
3.5
4.0
3.5
4.0
4.0
3a
3b
3c
3d
3e
(4) (a) Homogeneous Catalysis with Metal Phosphine
Complexes; Pignolet, L. H., Ed.; Plenum: New York, 1983.
(b) Parshall, G. W.; Ittel, S. Homogeneous Catalysis; Wiley:
New York, 1992.
2
3
4
5
82
78
75
78
(5) (a) Amatore, C.; Blart, E.; Genet, J. P.; Jutand, A.; Lemaire-
Audoire, S.; Savignac, M. J. Org. Chem. 1995, 60, 6829.
(b) De la Rosa, M. A.; Velarde, E.; Guzman, A. Synth.
Commun. 1995, 20, 2059. (c) Potts, K. T.; Horwitz, C. P.;
Fessak, A.; Keshavarz, K. M.; Nash, K. E.; Toscano, P. J. J.
Am. Chem. Soc. 1993, 115, 10444. (d) Novak, Z.; Szabo,
A.; Repasi, J.; Kotschy, A. J. Org. Chem. 2003, 68, 3327.
(e) For the use of Pd(OH)2/C as catalyst, see: Mori, Y.; Seki,
M. J. Org. Chem. 2003, 68, 1571. (f) Heidenreich, R. G.;
Kohler, K.; Krauter, J. G. E.; Pietsch, J. Synlett 2002, 1118.
(g) Bleicher, L. S.; Cosford, N. D. P.; Herbaut, A.;
McCallum, J. S.; McDonald, I. A. J. Org. Chem. 1998, 63,
1109. (h) Felpin, F.-X.; Vo-Thanh, G.; Villieras, J.;
Lebreton, J. Tetrahedron: Asymmetry 2001, 12, 1121.
(i) Bates, R. W.; Boonsombat, J. J. Chem. Soc., Perkin
Trans. 1 2001, 654. (j) Bleicher, L.; Cosford, N. D. P.
Synlett 1995, 1115.
6
7
4.0
3.5
4.0
3.5
4.0
3f
3g
3h
3i
76
80
82
83
78
8
9
10
3j
(6) Siemsen, P.; Livingston, R. C.; Diedrich, F. Angew. Chem.
Int. Ed. 2000, 39, 2632.
(7) (a) Cassar, L. J. Organomet. Chem. 1975, 93, 253.
(b) Austin, W. B.; Bilow, N.; Kelleghan, W. J.; Lan, K. S. Y.
J. Org. Chem. 1981, 46, 2250. (c) Alani, A.; Ferri, F.;
Linstrumelle, G. Tetrahedron Lett. 1995, 34, 6403.
(8) (a) Gelman, D.; Tsvelikhovsky, D.; Molander, G. A.; Blum,
J. J. Org. Chem. 2002, 67, 6287. (b) For a review see:
Tykwinski, R. R. Angew. Chem. Int. Ed. 2003, 42, 1556.
(9) Molander, G. A.; Katona, B. W.; Machrouhi, F. J. Org.
Chem. 2002, 67, 8416.
(10) (a) Park, S. B.; Alper, H. J. Chem. Soc., Chem. Commun.
2004, 1306. (b) Leadbeater, N. E.; Tominack, B. J.
Tetrahedron Lett. 2003, 44, 8653. (c) Tyrrell, E.; Al-Saardi,
A.; Millet, J. Synlett 2005, 487. (d) Arvela, R. K.;
a Isolated yields.
In conclusion, the present methodology is simple to per-
form, efficient and does not involve the use of expensive
reagents or catalysts. Due to the operational simplicity as
well as easy isolation and purification procedures for the
products, the methodology appears to be a useful alterna-
tive to the conventional Sonogashira coupling reaction.
Acknowledgment
Leadbeater, N. E.; Sangi, M. S.; Williams, V. A.; Granados,
P.; Singer, R. D. J. Org. Chem. 2005, 70, 161.
(11) Mori, A.; Kawashima, J.; Shimada, T.; Suguro, M.;
Hirabayashi, K.; Nishihara, Y. Org. Lett. 2000, 2, 2935.
(12) Urgaonkar, S.; Verkade, J. G. J. Org. Chem. 2004, 69, 5752.
We thank the Department of Science & Technology (DST), New
Delhi, for financial support and Dr. P.G. Rao, Director, Regional
Research Laboratory, Jorhat, for his keen interest and constant
encouragement. We also thank S. Gadhwal for doing a few experi-
ments.
Synlett 2005, No. 18, 2823–2825 © Thieme Stuttgart · New York