LETTER
Cobalt(I)-catalyzed Neutral Diels–Alder Reactions
1083
Thereby, a whole range of interesting building blocks can
be generated from easily accessible starting materials un-
der mild reaction conditions in an easy predictable regio-
chemical fashion in good chemical yields.
R1
R1
R2
OR3
1. CoI
2. H+
O
R2
Scheme 3
Dialkoxy-functionalized 1,3-Butadienes
Table 3 Cobalt(I)-catalyzed Diels–Alder Reactions of 2-Alkoxy-
substituted Butadienes with Alkynes Followed by Hydrolysis
When higher oxygenated butadienes were used as starting
materials, such as 2,3-dimethoxy-1,3-butadiene, 1,4-
dimethoxy-1,3-butadiene and Danishefsky’s diene, only
traces of the desired products could be detected by GC
and GC/MS analysis. The electronic demands of the start-
ing materials seem to be the reason for the low reactivity
of such substrates more likely than conformational re-
strictions, since reactions with the cisoidal oriented start-
ing material 2,2-dimethyl-4,5-dimethylene-1,3-dioxolane
also gave only traces of the cycloaddition product. How-
ever, our investigations to incorporate these starting mate-
rials into the arsenal of usable starting materials for the
cobalt-catalyzed Diels–Alder reactions with alkynes are
still underway.
Entry R1
R2 R3
Product
Yield (%)
43
Ph
Ph
1
Ph
H
Me
O
O
2
Ph
H
TMS
TMS
93
78
3
C(CH3)=CH2
H
O
O
O
4
5
Et
Et TMS
Ph TMS
83
80
Et
Acknowledgement
Et
We thank the German science foundation DFG for the financial
support.
TMS
TMS
Ph
References
(1) (a) Carruthers, W. Cycloaddition Reactions in Organic
Synthesis; Pergamon Press: Oxford, 1990. (b) Kobayashi,
S.; Jørgensen, K. A. Cycloaddition Reactions in Organic
Synthesis; Wiley-VCH: Weinheim, 2002.
In addition, the dihydroaromatic products can also be used
for several other follow-up chemical transformations, of
which only a few are given in Scheme 4.8 Besides cyclo-
propanation,9 epoxidation and ring opening to the corre-
sponding -hydroxy ketone,10 the bis-acetoxylated
products can also be generated by a hydroboration-oxida-
tion-acetylation protocol following standard procedures.11
(2) For a review see: (a) Lautens, M.; Klute, W.; Tam, W.
Chem. Rev. 1996, 96, 49; and references cited therein.
(b) Dolor, Z. R.; Vogel, P. J. Mol. Catal. 1990, 60, 59.
(c) tom Dieck, H.; Diercks, R. Angew. Chem. 1983, 95, 801.
(d) Lautens, M.; Tam, W.; Lautens, J. C.; Edwards, L. G.;
Crudden, C. M.; Smith, A. C. J. Am. Chem. Soc. 1995, 117,
6863. (e) Paik, S.-J.; Son, S. U.; Chung, Y. K. Org. Lett.
1999, 1, 2045. (f) Gilbertson, S. R.; Hoge, G. S.; Genov, D.
G. J. Org. Chem. 1998, 63, 10077. (g) Duan, I.-F.; Cheng,
C.-H.; Shaw, J.-S.; Cheng, S.-S.; Liou, K. F. Chem.
Commun. 1991, 1347. (h) Brunner, H.; Reimer, A. Bull.
Chem. Soc. Fr. 1997, 134, 307. (i) Pardigon, O.; Buono, G.
Tetrahedron: Asymmetry 1993, 4, 1977. (j) Pardigon, O.;
Tenaglia, A.; Buono, G. J. Org. Chem. 1995, 60, 1868.
(3) (a) Hilt, G.; du Mesnil, F.-X. Tetrahedron Lett. 2000, 41,
6757. (b) Hilt, G.; Korn, T. J. Tetrahedron Lett. 2001, 42,
2783. (c) Hilt, G.; Smolko, K. I. Synthesis 2002, 686. (d)
Hilt, G.; Lüers, S.; Polborn K. Isr. J. Chem. 2002, in press.
(4) The active catalyst (presumably [(dppe)Co+]) is generated in
situ upon one electron reduction of (dppe)CoBr2 towards the
corresponding Co(I)Br-complex and further abstraction of
the remaining halide by the ZnI2 to form the reactive species
and ZnI2Br–.
OTMS
OTMS
Zn / CH2I2
84%
Ph
O
Ph
OTMS
OH
1. MPCBA
2. HF py
42%
Ph
Ph
OTMS
OAc
1. BH3
(5) Makin, S. M.; Kruglikova, R. I.; Shavrygina, O. A.;
Chernyshev, A. I.; Popova, T. P.; Nguen, P. T. Zh. Org.
Khim. 1982, 18, 287.
(6) Reactions of terminal alkynes were complete within 0.5 h,
reactions of internal alkynes needed 2–4 h, while for steri-
cally hindered substrates, such as 1-trimethylsilyl-2-phenyl-
OAc
2. H2O2
3. Ac2O
63%
Ph
Ph
Scheme 4
Synlett 2002, No. 7, 1081–1084 ISSN 0936-5214 © Thieme Stuttgart · New York