U. R. Pillai et al. / Tetrahedron Letters 43 (2002) 2909–2911
2911
with H2O2 and avoids the use of large excess of volatile
organic solvent usually employed.
Reynaers, M.; Rao, Y. V. S.; Jacobs, P. Tetrahedron Lett.
1996, 39, 3221.
4. (a) Sheldon, R. A. Green Chem. 2000, 1, G1; (b) Anastas,
P. T.; Bartlett, L. B.; Kirchhoff, M. M.; Williamson, T. C.
Catal. Today 2000, 55, 11.
Experimental
5. Foucaud, A.; Bakouetila, M. Synthesis 1987, 854.
6. Yang, D.; Wong, M.-K.; Yip, Y.-C. J. Org. Chem. 1995,
60, 3887.
All the olefins, Mg(NO3)2·6H2O, Al(NO3)3·9H2O and
NaOH were obtained from Aldrich Chemicals and used
as such without any further purification. Magnesium
7. Straub, T. S. Tetrahedron Lett. 1995, 36, 663.
8. Yadav, V. K.; Kapoor, K. K. Tetrahedron 1996, 52, 3659.
9. Hutter, R.; Mallat, T.; Baiker, A. J. Catal. 1995, 157, 665.
10. van Vliet, M. C. A.; Arends, I. W. C. E.; Sheldon, R. A.
Tetrahedron Lett. 1999, 40, 5239.
aluminum
hydroxy
carbonate
(hydrotalcite),
Mg6Al2(OH)16CO3·4H2O, was prepared by co-precipita-
tion technique at a constant pH of 8 from a 0.5 M
solution of Mg(NO3)2·6H2O and Al(NO3)3·9H2O in
de-ionized water using a mixture of NaOH and Na2CO3
as the precipitants according to the procedure described
elsewhere.18,24 The solid precipitate was filtered, washed
several times with de-ionized water, dried in an oven at
100°C overnight and calcined in air at 400°C for 5 h. The
structure of hydrotalcite was confirmed by X-ray diffrac-
tion analysis of the dried material, which showed char-
acteristic peaks at 2q values of around 11.5.18
11. Smet, P.; Riondato, J.; Pauwels, T.; Moens, L.; Verdonck,
L. Inorg. Chem. Commun. 2000, 3, 557.
12. Oldroyd, R. D.; Sankar, G.; Thomas, J. M.; Ozkaya, D.
J. Phys. Chem. B 1998, 102, 1849.
13. Bhaumik, A.; Tatsumi, T. J. Catal. 2000, 189, 31.
14. Monnier, J. R.; Hartley, G. W. J. Catal. 2001, 203, 253.
15. Elemans, J. A. A. W.; Bijsterveld, E. J. A.; Rowan, A. E.;
Nolte, R. J. M. Chem. Commun. 2000, 2443.
16. Juwiler, D.; Blum, J.; Neumann, R. Chem. Commun. 1998,
1123.
17. Fraile, J. M.; Garcia, J. I.; Mayoral, J. A.; Sebti, S.; Tahir,
R. Green Chem. 2001, 3, 271.
18. Cavani, F.; Trifiro, F.; Vaccari, A. Catal. Today 1991, 11,
173.
19. Yamaguchi, K.; Mori, K.; Mizugaki, T.; Ebitani, K.;
Kaneda, K. J. Org. Chem. 2000, 65, 6897.
20. (a) Fraile, J. M.; Garcia, J. I.; Marco, D.; Mayoral, J. A.
Appl. Catal. A. Gen. 2001, 207, 239; (b) Fraile, J. M.; Garcia,
J. I.; Mayoral, J. A. Catal. Today 2000, 57, 3; (c) Fraile,
J. M.; Garcia, J. I.; Mayoral, J. A.; Figueras, F. Tetrahedron
Lett. 1996, 37, 5995.
21. (a) Varma, R. S. Tetrahedron 2002, 58, 1235; (b) Varma,
R. S. Pure Appl. Chem. 2001, 73, 193; (c) Varma, R. S. In
Green Chemistry: Challenging Perspectives; Tundo, P.;
Anastas, P. T., Eds.; Oxford University: Oxford, 2000; p.
221; (d) Varma, R. S. In Green Chemical Syntheses and
Processes; Anastas, P. T.; Heina, L.; Williamson, T., Eds.;
ACS Symposium Series, No. 767, American Chemical
Society: Washington, DC, 2000, p. 292; (e) Varma, R. S.
Green Chem. 1999, 1, 43.
MW-assisted epoxidation of various olefins was con-
ducted in liquid phase in a stoppered 125 mL conical flask
using an unmodified domestic household microwave
oven (Panasonic, 1200W) equipped with inverter tech-
nology, which provides a realistic control of the
microwave power to the desired level. The MW oven was
operated at reduced MW-power level of 40% (480 W) for
low boiling olefins (<100°C) and at 60% power level (720
W) for high boiling olefins (>100°C). In all cases, the
samples were subjected to MW-irradiation for a period
of 15 s with 2 min mixing intervals.25 After completion
of the reaction, the mixture was extracted into diethyl
ether, the organic layer was separated and analyzed by
a Hewlett–Packard 6890 Gas Chromatograph using a
HP-5 5% phenyl methyl siloxane capillary column (30
m×320 mm×0.25 mm) and a quadruple mass filter
equipped HP 5973 mass selective detector. The product
yield reported is the GC yield. The purity of the products
was established by the GC–MS analysis of the samples.
Acknowledgements
22. (a) Perreux, L.; Loupy, A. Tetrahedron 2001, 57, 9199; (b)
Lidstrom, P.; Tierney, J.; Wathey, B.; Westman, J. Tetra-
hedron 2001, 57, 9225; (c) Bose, A. K.; Banik, B. K.;
Lavlinskaia, N.; Jayaraman, M.; Manhas, M. S. Chemtech
1997, 27, 18.
U.R.P. is a postgraduate research participant at the
National Risk Management Research Laboratory
administered by the Oak Ridge Institute for Science and
Education through an interagency agreement between
the US Department of Energy and the US Environmental
Protection Agency.
23. Sala, G. D.; Giordano, L.; Lattanzi, A.; Proto, A.; Scettri,
A. Tetrahedron 2000, 56, 3567.
24. Unnikrishnan, R.; Narayanan, S. J. Mol. Catal. A (Chem.)
1999, 144, 173.
25. In a typical reaction procedure, the catalyst (0.25 g) was
mixed with the substrate (12.5 mmol), acetonitrile (4 mL)
and hydrogen peroxide (50 mmol) in a 125 mL conical flask
closed with a rubber stopper and subjected to MW
irradiation for 15 s. The sample was then thoroughly mixed
outside for 2 min and again irradiated for another 15 s. This
intermittent heating–stirring cycle was repeated for the total
irradiation time (see Table 1). The temperature of the bulk
reaction mixture was also measured immediately after the
irradiation. Forcomparisonpurposes, theexperimentswere
also conducted in the liquid phase under conventional
heating conditions in an oil bath.
References
1. (a) Adam, W.; Saha-Moller, C. R.; Ganeshpure, P. A.
Chem. Rev. 2001, 101, 3499; (b) Rudolph, J.; Reddy, K.
L.; Chiang, J. P.; Sharpless, K. B. J. Am. Chem. Soc. 1997,
119, 6189.
2. (a) Sato, K.; Aoki, M.; Ogawa, M.; Hashimoto, T.; Noyori,
R. J. Org. Chem. 1996, 61, 8310; (b) Venturello, C.;
D’Aloisio, R. J. Org. Chem. 1988, 53, 1553.
3. (a) Coperet, C.; Adolfson, H.; Sharpless, K. B. Chem.
Commun. 1997, 1565; (b) de Vos, D. E.; Sels, B. F.;