Angewandte Chemie International Edition
10.1002/anie.202005563
COMMUNICATION
The synthetic utility of the S-H insertion products was put to
the test and several of the results are depicted in Scheme 3. 3a
was oxidized from the thioether to the sulfone using 3.2 equiv. of
m-CPBA to give rise to 10 in 91% yield with 80% enantiomeric
excess. The reduction of the 3a to alcohol 11 occurred in 85%
yield with retention of enantiomeric excess upon treatment with
2019, 51, 612–628. b) I. Triandafillidi, A. Savvidou, C. G. Kokotos, Org.
Lett. 2019, 21, 5533–5537. c) D. Clare, B. C. Dobson, P. A. Inglesby, C.
Aïssa, Angew. Chem. Int. Ed. 2019, 58, 16198–16202. d) S. Zhu, K. Shi,
H. Zhu, Z. K. Jia, X. F. Xia, D. Wang, L. H. Zou, Org. Lett. 2020, 22,
1504–1509. e) Y. Fu, Z. Wang, Q. Zhang, Z. Li, H. Liu, X. Bi, J. Wang,
RSC Adv. 2020, 10, 6351–6355. f) V. Hanchate, R. Devarajappa, K. R.
Prabhu, Org. Lett. 2020, acs.orglett.0c00451. g) S. S. Zhang, H. Xie, B.
Shu, T. Che, X. T. Wang, D. Peng, F. Yang, L. Zhang, Chem. Comm.
3
.0 equiv. of lithium aluminum hydride in diethyl ether. The
addition of methyl magnesium bromide gave rise to alcohol 12 in
8% yield with 82% enantiomeric excess. It is also worth to
4
2020, 56, 423–426. h) C. Janot, J.-B. Chagnoleau, N. R. Halcovitch, J.
mention that compound 3a could be prepared in a larger scale (1
mmol) without any change in yield and enantiomeric ratio.
Muir, C. Aïssa, J. Org. Chem. 2020, 85, 1126–1137. i) Y. Kommagalla,
S. Ando, N. Chatani, Org. Lett. 2020, 22, 1375–1379.
[
2]
R. Oost, J. D. Neuhaus, J. Merad, N. Maulide, in Mod. Ylide Chem. Appl.
Ligand Des. Org. Catal. Transform. (Ed.: V.H. Gessner), Springer
International Publishing, Cham, 2018, pp. 73–115.
[
[
[
[
[
[
[
[
3]
4]
5]
6]
7]
8]
9]
J. D. Neuhaus, R. Oost, J. Merad, N. Maulide, Top. Curr. Chem. 2018,
3
76, 15.
A. C. B. Burtoloso, R. M. P. Dias, I. A. Leonarczyk, Eur. J. Org. Chem.
013, 5005–5016.
I. K. Mangion, I. K. Nwamba, M. Shevlin, M. A. Huffman, Org. Lett. 2009,
1, 3566–3569.
A. G. Talero, B. S. Martins, A. C. B. Burtoloso, Org. Lett. 2018, 20, 7206–
211.
C. Janot, P. Palamini, B. C. Dobson, J. Muir, C. Aïssa, Org. Lett. 2019,
1, 296–299.
2
1
7
2
C. Janot, J.-B. Chagnoleau, N. R. Halcovitch, J. Muir, C. Aïssa, J. Org.
Chem. 2020, 85, 1126–1137.
J. E. Baldwin, R. M. Adlington, C. R. A. Godfrey, D. W. Gollins, J. G.
Vaughan, J. Chem. Soc. Chem. Commun. 1993, 1434–1435.
Scheme 3. Synthetic manipulations of S-H insertion product 3a.
10] I. K. Mangion, M. Weisel, Tetrahedron Lett. 2010, 51, 5490–5492.
In summary, an enantioselective S-H insertion reaction of -
carbonyl sulfoxonium ylides is reported. The transformation relies
on the influence of a known chiral thiourea catalyst to control the
enantioselectivity of a diverse array of aryl thiols in several -
carbonyl sulfoxonium ylide reaction partners. High yields and high
levels of enantiocontrol are observed with a relatively broad
substrate scope. Significant additional investigations on the
mechanism indicate how classical and non-classical hydrogen
bonding interactions play key roles in determining selectivity.
Current efforts are directed toward exploring the reaction scope
of thiourea-catalyzed insertion reaction of -carbonyl sulfoxonium
ylides and our progress will be reported in due course.
[11] I. K. Mangion, R. T. Ruck, N. Rivera, M. A. Huffman, M. Shevlin, Org.
Lett. 2011, 13, 5480-5483.
[12] C. Molinaro, P. G. Bulger, E. E. Lee, B. Kosjek, S. Lau, D. Gauvreau, M.
E. Howard, D. J. Wallace, P. D. O’Shea, J. Org. Chem. 2012, 77, 2299–
2309.
[
[
13] A. M. Phelps, V. S. Chan, J. G. Napolitano, S. W. Krabbe, J. M.
Schomaker, S. Shekhar, J. Org. Chem. 2016, 81, 4158–4169.
14] A. Burtoloso, J. Santiago, B. Bernardim, A. Talero, Curr. Org. Synth.
2015, 12, 650–659.
[
[
15] R. M. P. Dias, A. C. B. Burtoloso, Org. Lett. 2016, 18, 3034–3037.
16] Y. Guan, J. W. Attard, M. D. Visco, T. J. Fisher, A. E. Mattson, Chem. -
A Eur. J. 2018, 24, 7123–7127.
[
[
[
[
17] A. M. Hardman-Baldwin, M. D. Visco, J. M. Wieting, C. Stern, S. I. Kondo,
A. E. Mattson, Org. Lett. 2016, 18, 3766–3769.
Acknowledgements
18] A. M. Hardman-Baldwin, A. E. Mattson, ChemSusChem 2014, 7, 3275–
3
278.
19] A. G. Schafer, J. M. Wieting, T. J. Fisher, A. E. Mattson, Angew. Chemie
Int. Ed. 2013, 52, 11321–11324.
20] A. G. Schafer, J. M. Wieting, A. E. Mattson, Org. Lett. 2011, 13, 5228–
231.
The National Institutes of Health are gratefully acknowledged for
providing partial support for these studies (5 R35 GM124804). We
thank the FAPESP for financial support (2013/18009-4;
-
2017/23329-9) in the form of a postdoctoral fellowship to P.B.M
5
(2018/19105-0) and the EPSRC DTP (studentship to E.H.E.F).
[
[
[
21] A. Franconetti, G. de Gonzalo, ChemCatChem 2018, 10, 5554–5572.
22] A. Rouf, C. Tanyeli, Curr. Org. Chem. 2016, 20, 2996–3013.
This research made use of the Balena High Performance
Computing Service at the University of Bath.
23] P. Chauhan, S. Mahajan, U. Kaya, D. Hack, D. Enders, Adv. Synth. Catal.
2
015, 357, 253–281.
24] T. J. Auvil, A. G. Schafer, A. E. Mattson, European J. Org. Chem. 2014,
014, 2633–2646.
Keywords: S-H insertion • enantioselective • sulfoxonium ylide •
aryl thiol • organocatalytic
[
2
[
[
25] M. Tsakos, C. G. Kokotos, Tetrahedron 2013, 69, 10199–10222.
26] Y. Xi, X. Shi, Chem. Commun. 2013, 49, 8583–8585.
[
1]
For recent and selected publications, see: a) J. Vaitla, A. Bayer, Synth.
5
This article is protected by copyright. All rights reserved.