Organic Letters
Letter
Industrial Perspective; John Wiley & Sons: Hoboken, NJ, 2012.
(d) Nakamura, I.; Yamamoto, Y. Chem. Rev. 2004, 104, 2127.
(4) (a) Yan, B.; Liu, Y. Org. Lett. 2007, 9, 4323. (b) Yan, B.; Zhou, Y.;
Zhang, H.; Chen, J.; Liu, Y. J. Org. Chem. 2007, 72, 7783. (c) Schwier,
T.; Sromek, A. W.; Yap, D. M. L.; Chernyak, D.; Gevorgyan, V. J. Am.
Chem. Soc. 2007, 129, 9868. (d) Seregin, I. V.; Gevorgyan, V. J. Am.
Chem. Soc. 2006, 128, 12050. (e) Patil, S. S.; Patil, S. V.; Bobade, V. D.
Synlett 2011, 2011, 2379. (f) Smith, C. R.; Bunnelle, E. M.; Rhodes, A.
J.; Sarpong, R. Org. Lett. 2007, 9, 1169. (g) Hardin, A. R.; Sarpong, R.
Org. Lett. 2007, 9, 4547. (h) Seregin, I. V.; Schammel, A. W.;
Gevorgyan, V. Org. Lett. 2007, 9, 3433. (i) Hardin-Narayan, A. R.;
Sarpong, R. Green Chem. 2010, 12, 1556. (j) Bunnelle, E. M.; Smith, C.
R.; Lee, S. K.; Singaram, W. S.; Rhodes, A. J.; Sarpong, R. Tetrahedron
2008, 64, 7008. (k) Xia, Y.; Dudnik, A. S.; Li, Y.; Gevorgyan, V. Org.
Lett. 2010, 12, 5538. (l) Chernyak, D.; Gadamsetty, S. B.; Gevorgyan,
V. Org. Lett. 2008, 10, 2307. (m) Seregin, I.; Schammel, A.;
Gevorgyan, V. Tetrahedron 2008, 64, 6876.
Efforts were made to recycle the reaction catalyst using Pd/C
as the catalyst. The recycle reaction was carried out on a 1
mmol scale of 1a (Scheme 3). Product 2a was obtained in 72%
Scheme 3. Synthesis of Indolizines from Propargylic
Pyridines
yield using new Pd/C, while 10% cycloisomerization product
2aa was obtained. After simple filtration and washing with
methanol, Pd/C was used for the next round of carbonylation.
The yield of 1a decreased slightly in the first recycle of Pd/C
(69%). In the second recycle, the yield of 2a decreased to 62%
while the yield of 2aa increased to 23%. The results showed
that Pd/C could be separated and recycled.
In conclusion, an efficient synthesis of indolizine derivatives
was developed by the palladium-catalyzed oxidative carbon-
ylation of propargylic pyridines. The reaction could be
conducted at room temperature, under 3 bar of CO, in the
presence of Pd2(dba)3 or Pd/C. The recycling of the Pd/C
catalyst was also realized.
(5) Kim, I.; Choi, J.; Won, H. K.; Lee, G. H. Tetrahedron Lett. 2007,
48, 6863.
(6) (a) Chernyak, D.; Skontos, C.; Gevorgyan, V. Org. Lett. 2010, 12,
3242. (b) Li, Z.; Chernyak, D.; Gevorgyan, V. Org. Lett. 2012, 14,
6056. (c) Chernyak, D.; Gevorgyan, V. Org. Lett. 2010, 12, 5558.
(7) (a) Meng, X.; Liao, P.; Liu, J.; Bi, X. Chem. Commun. 2014, 50,
11837. (b) Zhang, C. H.; Zhang, H.; Zhang, L. Y.; Wen, T. B.; He, X.
M.; Xia, H. P. Organometallics 2013, 32, 3738. (c) Chung, L.-H.;
Wong, C.-Y. Organometallics 2013, 32, 3583. (d) Cho, H.; Kim, I.
Tetrahedron 2012, 68, 5464.
(8) For other selected examples, see: (a) Liu, R.-R.; Cai, Z.-Y.; Lu, C.-
J.; Ye, S.-C.; Xiang, B.; Gao, J.; Jia, Y.-X. Org. Chem. Front. 2015, 2,
226. (b) Zhang, L.; Li, X.; Liu, Y.; Zhang, D. Chem. Commun. 2015, 51,
6633.
ASSOCIATED CONTENT
* Supporting Information
■
́
(9) (a) Kollar, L., Ed. Modern Carbonylation Methods; Wiley-VCH
S
Verlag: Weinheim, 2008. (b) Beller, M., Ed. Catalytic Carbonylation
Reactions; Springer: Berlin, 2006. (c) Gadge, S. T.; Bhanage, B. M. RSC
Adv. 2014, 4, 10367. (d) Sumino, S.; Fusano, A.; Fukuyama, T.; Ryu, I.
Acc. Chem. Res. 2014, 47, 1563. (e) Wu, X.-F.; Neumann, H.; Beller,
M. Chem. Rev. 2013, 113, 1. (f) Wu, X.-F.; Neumann, H.; Beller, M.
ChemCatChem 2012, 4, 447. (g) Brancour, C.; Fukuyama, T.; Mukai,
Y.; Skrydstrup, T.; Ryu, I. Org. Lett. 2013, 15, 2794. (h) Quintero-
Duque, S.; Dyballa, K. M.; Fleischer, I. Tetrahedron Lett. 2015, 56,
2634. (i) Lang, R.; Xia, C.; Li, F. New J. Chem. 2014, 38, 2732.
(j) Morimoto, T.; Fujioka, M.; Fuji, K.; Tsutsumi, K.; Kakiuchi, K.
Pure Appl. Chem. 2008, 80, 1079. (k) Li, W.; Wu, X.-F. Chem. - Eur. J.
2015, 21, 7374. (l) Cheng, J.; Qi, X.; Li, M.; Chen, P.; Liu, G. J. Am.
Chem. Soc. 2015, 137, 2480. (m) Xu, T.; Alper, H. J. Am. Chem. Soc.
2014, 136, 16970. (n) Andersen, T.-L.; Friis, S.-D.; Audrain, H.;
Nordeman, P.; Antoni, G.; Skrydstrup, T. J. Am. Chem. Soc. 2015, 137,
1548. (o) Dong, K.; Fang, X.; Jackstell, R.; Laurenczy, G.; Li, Y.; Beller,
M. J. Am. Chem. Soc. 2015, 137, 6053. (p) Lian, Z.; Friis, S. D.;
Skrydstrup, T. Chem. Commun. 2015, 51, 3600.
The Supporting Information is available free of charge on the
Experimental procedures and spectral data (PDF)
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
We are grateful to the Natural Sciences and Engineering
Research Council of Canada for support of this research.
■
(10) (a) Beller, M.; Wu, X.-F. Oxidative Carbonylation Reactions. In
Transition Metal Catalyzed Carbonylation Reactions: Carbonylative
Activation of C−X Bonds; Springer-Verlag: Berlin, 2013; pp 147−
166. (b) Wu, X.-F.; Neumann, H.; Beller, M. ChemSusChem 2013, 6,
229. (c) Liu, Q.; Zhang, H.; Lei, A. Angew. Chem., Int. Ed. 2011, 50,
10788. (d) Liu, B.; Hu, F.; Shi, B.-F. ACS Catal. 2015, 5, 1863.
(e) Tang, S.; Yuan, J.; Liu, C.; Lei, A. Dalton Trans. 2014, 43, 13460.
(f) Gabriele, B.; Mancuso, R.; Salerno, G. Eur. J. Org. Chem. 2012,
2012, 6825. (g) Mei, T.-S.; Kou, L.; Ma, S.; Engle, K. M.; Yu, J.-Q.
Synthesis 2012, 44, 1778. (h) Gabriele, B.; Salerno, G.; Costa, M. Top.
Organomet. Chem. 2006, 18, 239.
(11) For selected recent references, see: (a) Li, W.; Duan, Z.; Zhang,
X.; Zhang, H.; Wang, M.; Jiang, R.; Zeng, H.; Liu, C.; Lei, A. Angew.
Chem., Int. Ed. 2015, 54 (6), 1893. (b) Wang, L.; Wang, Y.; Liu, C.;
Lei, A. Angew. Chem., Int. Ed. 2014, 53, 5657. (c) Li, W.; Liu, C.;
Zhang, H.; Ye, K.; Zhang, G.; Zhang, W.; Duan, Z.; You, S.; Lei, A.
REFERENCES
■
(1) (a) Wolfe, J. P., Ed. Synthesis of Heterocycles via Metal-Catalyzed
Reactions that Generate One or More Carbon−Heteroatom Bonds;
Springer: Berlin, 2013. (b) Bolm, C., Beller, M., Eds. Transition Metals
for Organic Synthesis; Wiley-VCH: Weinheim, 2004; Vols. 1 and 2.
(c) Majumdar, K. C., Chattopadhyay, S. K., Eds. Heterocycles in Natural
Product Synthesis; Wiley-VCH: Weinheim, 2011. (d) Katritzky, A. R.,
Ed. Comprehensive Heterocyclic Chemistry III; Elsevier: Amsterdam, NY,
2008.
(2) (a) Teodoro, B. V. M; Correia, J. T. M.; Coelho, F. J. Org. Chem.
2015, 80, 2529. (b) Sharma, V.; Kumar, V. Med. Chem. Res. 2014, 23,
3593. (c) Michael, J. P. Nat. Prod. Rep. 2008, 25, 139. (d) Singh, G. S.;
Mmatli, E. E. Eur. J. Med. Chem. 2011, 46, 5237. (e) Vemula, V. R.;
Vurukonda, S.; Bairai, C. K. Int. J. Pharm. Sci. Rev. Res. 2011, 11, 159.
(3) (a) Yamamoto, Y. Chem. Soc. Rev. 2014, 43, 1575. (b) Gulevich,
A. V.; Dudnik, A. S.; Chernyak, N.; Gevorgyan, V. Chem. Rev. 2013,
113, 3084. (c) Crawley, M. L., Trost, B. M., Eds. Applications of
Transition Metal Catalysis in Drug Discovery and Development: An
Angew. Chem., Int. Ed. 2014, 53, 2443. (d) Volla, C. M. R.; Backvall, J.-
̈
E. Org. Lett. 2014, 16, 4174. (e) Chen, M.; Ren, Z.-H.; Wang, Y.-Y.;
Guan, Z.-H. Angew. Chem., Int. Ed. 2013, 52, 14196. (f) Liu, B.; Jiang,
C
Org. Lett. XXXX, XXX, XXX−XXX