862
J. XU ET AL.
3
-Cyclohexyl-5,5-dimethyl-4-methyleneoxazolidin-2-one
þ
(3d). White
ꢀ
solid, mp 54–56 C; MS: m=z ¼ 209 (M , 23), 128 (100), 112 (15), 84 (45), 55 (17),
ꢂ1
1
4
1 (15); IR (KBr, v=cm ): 2934, 2859, 1733, 1682; H NMR (400 MHz, CDCl ) d
3
(
ppm): 1.09–1.19 (m, 1H), 1.27–1.35 (m, 2H), 1.44 (6H, s), 1.65 (d, J ¼ 9.4 Hz,
H), 1.80 (d, J ¼ 10.4 Hz, 2H), 2.02–2.05 (m, 2H), 3.52 (1H, m), 3.95 (d, J ¼ 2.8 Hz,
Hz, 1H), 4.16 (d, J ¼ 2.8 Hz, 1H).
3
3
-n-Butyl-5,5-pentamethylene-4-methyleneoxazolidin-2-one (3e). White
þ
ꢀ
solid, mp 60–62 C; MS: m=z ¼ 223 (M , 38), 181 (58), 168 (100), 122 (25), 112
ꢂ1
1
38), 55 (11), 41 (13); IR (KBr, v=cm ): 2940, 2868, 1730, 1672; H NMR
(
(
400 MHz, CDCl ) d (ppm): 0.92 (t, J ¼ 7.4 Hz, 3H), 1.23–1.84 (m, 14H), 3.41 (t,
3
J ¼ 7.2 Hz, 2H), 3.92 (d, J ¼ 2.4 Hz, 1H), 4.00 (d, J ¼ 2.4 Hz, 1H).
3
-Butyl-5-methyl-4-methylene-5-phenyloxazolidin-2-one (3f). Orange-
þ
red oil; MS: m=z ¼ 245 (M , 20), 190 (22), 158 (100), 144 (100), 129 (32), 97 (65),
ꢂ1
7 (23), 41 (8); IR (KBr, v=cm ): 2934, 2868, 1760; H NMR (400 MHz, CDCl )
3
1
7
d (ppm): 0.88–0.94 (m, 3H), 1.30–1.34 (m, 2H), 1.55–1.60 (m, 2H), 1.85 (s, 3H),
.42–3.51 (m, 2H), 4.08 (d, J ¼ 2.8 Hz, 1H), 4.22 (d, J ¼ 3.2 Hz, 1H), 7.31–7.45
m, 5H).
3
(
3
-Butyl-5-isopropyl-5-methyl-4-methyleneoxazolidin-2-one (3g). Orange-
þ
red oil; MS: m=z ¼ 211 (M , 32), 169 (90), 126 (29), 112 (100), 84 (10), 55 (14), 41
ꢂ1
1
(
22); IR (KBr, v=cm ): 2970, 2879, 1775, 1673; H NMR (400 MHz, CDCl ) d
3
(ppm): 0.88–0.99 (m, 9H), 1.30–1.36 (m, 2H), 1.44 (s, 3H), 1.53–1.57 (m, 2H),
1
4
.80–1.82 (m, 1H), 3.31–3.38 (m, 1H), 3.43–3.57 (m, 1H), 3.91 (d, J ¼ 2.8 Hz, 1H),
.08 (d, J ¼ 2.8 Hz, 1H).
3
-Butyl-5-hexyl-5-methyl-4-methyleneoxazolidin-2-one (3h). Dark-red
þ
oil; MS: m=z ¼ 253 (M , 5), 169 (100), 126 (25), 113 (30), 98 (38), 55 (10), 41 (12);
ꢂ1
1
IR (KBr, v=cm ): 2930, 2865, 1675; H NMR (400 MHz, CDCl ) d (ppm): 0.85
3
(
3
t, J ¼ 6.8 Hz, 3H), 0.93 (t, J ¼ 7.2 Hz, 3H), 1.23–1.35 (m, 10H), 1.44–1.64 (m, 5H),
.42 (M, 2H), 3.90 (d, J ¼ 2.8 Hz, 1H), 4.07 (d, J ¼ 2.8 Hz, 1H).
REFERENCES
1. (a) Sakakura, T.; Choi, J. C.; Yasuda, H. Transformation of carbon dioxide. Chem. Rev.
2007, 107, 2365–2387; (b) Darensbourg, D. J. Making plastics from carbon dioxide: Salen
2
metal complexes as catalysts for the production of polycarbonates from epoxides and CO .
Chem. Rev. 2007, 107, 2388–2410.
2
. (a) Ager, D. J.; Prakash, I.; Schaad, D. R. 1,2-Amino alcohols and their heterocyclic deri-
vatives as chiral auxiliaries in asymmetric synthesis. Chem. Rev. 1996, 96, 835–875; (b)
Dyen, M. E.; Swern, D. 2-Oxazolidones. Chem. Rev. 1967, 67, 197–246.
3. (a) Matsunaga, H.; Ishizuka, T.; Kunieda, T. Synthetic utility of five-membered
heterocycles—Chiral functionalization and applications. Tetrahedron 2005, 61, 8073–8094;
(
b) Vicario, J. L.; Badia, D.; Carrillo, L.; Reyes, E.; Etxebarria, J. a-Amino acids, b-amino
alcohols, and related compounds as chiral auxiliaries, ligands and catalysts in the
asymmetric aldol reaction. Curr. Org. Chem. 2005, 9, 219–235.
4
. (a) Mukhtar, T. A.; Wright, G. D. Streptogramins, oxazolidinones, and other inhibitors of
bacterial protein synthesis. Chem. Rev. 2005, 105, 529–542; (b) Renslo, A. R.; Luehr, G. W.;
Gordeev, M. F. Recent developments in the identification of novel oxazolidinone