JOURNAL OF
POLYMER SCIENCE
ARTICLE
WWW.POLYMERCHEMISTRY.ORG
of added TMC results in bimodal size distribution [Fig. 6(B)].
However, by increasing the amount of TMC added, more
defined particles are formed [Fig. 6(C,D)] without significant
deterioration in AE (Table 2). The formation of NPs of protein,
P(Glu-oa) and TMC was also confirmed by SEM (Fig. 7).
9 Y. S. Nam, J. Y. Park, S.-H. Han, I.-S. Chang, Biotechnol. Lett.
2
002, 24, 2093–2098.
1
0 A. Kumari, S. K. Yadav, S. C. Yadav, Colloid Surf. B 2010,
7
5, 1–18.
1
1 G. Liu, X. Hong, M. Jiang, W. Yuan, Int. J. Nanomed. 2012,
7, 4559–4569.
Higher amount of TMC can be added to the 3 mg/mL than
to the 2 mg/mL P(Glu-oa) polymer solution before the pre-
cipitation of particles occurs, which reveals the ability of
TMC to form stable NPs through electrostatic interaction and
fine-tuning of final NPs size. Excellent AE as well as rather
high final GCSF loading obtained with the P(Glu-oa) 13%
and the P(Glu-oa) 24% polymers in combination with TMC
demonstrate a potential for further investigation of these
NPs for application in oral delivery of biopharmaceuticals.
12 S. H. Choi, T. G. Park, Int. J. Pharm. 2006, 311, 223–228.
13 S. Boddohi, N. Moore, P. A. Johnson, M. J. Kipper, Bioma-
cromolecules 2009, 10, 1402–1409.
14 S. Mizrahy, D. Peer, Chem. Soc. Rev. 2012, 41, 2623–2640.
15 H.-W. Sung, K. Sonaje, Z.-X. Liao, L.-W. Hsu, E.-Y, Chuang,
Acc. Chem. Res. 2012, 45, 619–629.
1
6 Y. Chen, V. J. Mohanraj, J. E. Parkin, Lett. Pept. Sci. 2003,
1
0, 621–629.
1
7 M. Huang, S. N. Vitharana, L. J. Peek, T. Coop, C. Berkland,
Biomacromolecules 2007, 8, 1607–1614.
8 W. Tiyaboonchai, J. Woiszwillo, R. C. Sims, C. R. Middaugh,
Int. J. Pharm. 2003, 255, 139–151.
9 B. Sarmento, A. Ribeiro, F. Veiga, P. Sampaio, R. Neufeld,
D. Ferreira, Pharm. Res. 2007, 24, 2198–2206.
0 Y.-H. Lin, F.-L. Mi, C.-T. Chen, W.-C. Chang, S.-F. Peng, H.-F.
Liang, H.-W. Sung, Biomacromolecules 2007, 8, 146–152.
1 E.-Y. Chuang, K.-J. Lin, F.-Y. Su, F.-L. Mi, B. Maiti, C.-T.
1
CONCLUSIONS
1
Hydrophobically modified, negatively-charged, water-soluble
poly(sodium glutamates) with different content of randomly
distributed octyl chains in combination with TMC proved to
be very effective in formation of GCSF protein loaded NPs
using polyelectrolyte complexation method. The content of
octyl grafts on poly(glutamate) backbone plays an important
role in complexation efficiency of P(Glu-oa) polymers with
GCSF protein. By optimization the ratio between the GCSF
protein, P(Glu-oa, 13 or 24%) and TMC well-defined NPs
with high AE and FL were prepared. Thus, a combination of
P(Glu-oa) and TMC polymers for preparation of NPs loaded
with GCSF provides minimal loss of protein drug during NPs
preparation. This work demonstrates that polymers should
be carefully designed to tune their properties in a way to
efficiently interact with protein drug, which is a prerequisite
for successful preparation of well-defined NPs with high FL.
2
2
Chen, S.-P. Wey, T.-C. Yen, J.-H. Juang, H.-W. Sung, J. Control.
Release 2013, 172, 513–522.
2
2 B. Deutel, M. Greindl, M. Thaurer, A. Bernkop-Schn u€ rch,
Biomacromolecules 2008, 9, 278–285.
2
2
3 K.A. Janes, P. Calvo, M. J. Alonso, Adv. Drug Delivery Rev.
001, 47, 83–97.
2
4 A. Bayat, F. A. Dorkoosh, A. R. Dehpour, L. Moezi, B.
Larijani, H. E. Junginger, M. Rafiee-Tehrani, Int. J. Pharm.
2008, 356, 259–266.
25 S. M. van der Merwe, J. C. Verhoef, J. H. M. Verheijden, A.
F. Kotze, H. E. Junginger, Eur. J. Pharm. Biopharm. 2004, 58,
2
25–235.
2
2
6 F. Qian, F. Cui, J. Ding, C. Tang, C. Yin, Biomacromolecules
006, 7, 2722–2727.
ACKNOWLEDGMENTS
2
7 T. J. Deming, Prog. Polym. Sci. 2007, 32, 858–875.
The authors gratefully acknowledge the financial support of the
Ministry of Higher Education, Science and Technology of the
Republic of Slovenia through the Slovenian Research Agency
28 N. Hadjichristidis, H. Iatrou, M. Pitsikalis, G. Sakellariou,
Chem. Rev. 2009, 109, 5528–5578.
2
2
9 E. Garanger, S. Lecommandoux, Angew. Chem. Int. Ed.
012, 51, 3060–3062.
(
Program P2-0145 and Projects L2-4166 and Z2-6755) and the
3
0 Y. Bae, K. Kataoka, Adv. Drug Delivery Rev. 2009, 61, 768–784.
1 A. Lalatsa, A. G. Sch a€ tzlein, M. Mazza, T. B. Hang Le , I. F.
Centre of Excellence, Polymer Materials and Technologies for
access to the MALDI-TOF MS.
3
Uchegbu, J. Control. Release 2012, 161, 523–536.
2 A. Lavasanifar, J. Samuel, G. S. Kwon, Adv. Drug Delivery
Rev. 2002, 54, 169–190.
3 K. Kataoka, T. Matsumoto, M. Yokoyama, T. Okano, Y.
3
REFERENCES AND NOTES
1
C. Pinto Reis, R. J. Neufeld, A. J. Ribeiro, F. Veiga, Nanome-
3
dicine 2006, 2, 8–21.
Sakurai, S. Fukushima, K. Okamoto, G. S. Kwon, J. Control.
Release 2000, 64, 143–153.
2
2
F. Chiellini, A. M. Piras, C. Errico, E. Chiellini, Nanomedicine
008, 3, 367–393.
3
4 A. Lavasanifar, J. Samuel, G. S. Kwon, J. Control. Release
3
R. Duncan, Nat. Rev. 2003, 2, 347–360.
2002, 79, 165–172.
4
D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit, R.
35 J. Rios-Doria, A. Carie, T. Costich, B. Burke, H. Skaff, R.
Langer, Nat. Nanotechnol. 2007, 2, 751–760.
5
M. E. Davis, Z. Chen, D. M. Shin, Nat. Rev. 2008, 7, 771–782.
6
K. S. Soppimath, T. M. Aminabhavi, A. R. Kulkarni, W. E.
36 C. Bonduelle, S. Lecommandoux, Biomacromolecules 2013,
14, 2973–2983.
Rudzinski, J. Control. Release 2001, 70, 1–20.
7
C. Damge, P. Maincent, N. Ubrich, J. Control. Release 2007,
37 J. Rodrıguez-Hernandez, S. Lecommandoux, J. Am. Chem.
Soc. 2005, 127, 2026–2027.
117, 163–170.
8
2
H. Gao, Y. N. Wang, Y. G. Fan, J. B. Ma, J. Control. Release
005, 107, 158–173.
38 Y. Huang, Z. Tang, X. Zhang, H. Yu, H. Sun, X. Pang, X.
Chen, Biomacromolecules 2013, 14, 2023–2032.
2
984
JOURNAL OF POLYMER SCIENCE, PART A: POLYMER CHEMISTRY 2014, 52, 2976–2985