RSC Advances
Paper
mechanism of tumoritropic accumulation of proteins and
the antitumor agent smancs, Cancer Res., 1986, 46, 6387–
6392.
and site of cellular reducing activities, Adv. Drug Delivery
Rev., 2003, 55, 199–215.
27 J. Huang, Y. N. Xue, N. Cai, H. Zhang, K. K. Wen, X. G. Luo,
S. H. Long and F. Q. Yu, Efficient reduction and pH co-
triggered DOX-loaded magnetic nanogel carrier using
disulde crosslinking, Mater. Sci. Eng., C, 2015, 46, 41–51.
14 J. Pan, Y. Liu and S. Feng, Multifunctional nanoparticles of
biodegradable copolymer blend for cancer diagnosis and
treatment, Nanomedicine, 2010, 5, 347–360.
15 Y. F. Tan, P. Chandrasekharan, D. Maity, C. X. Yong, 28 S. Wang, W. Yang, H. Du, F. Guo, H. Wang, J. Chang, X. Gong
K. H. Chuang, Y. Zhao, S. Wang, J. Ding and S. S. Feng,
Multimodal tumor imaging by iron oxides and quantum
dots formulated in poly(lactic acid)-D-alpha-tocopheryl
polyethylene glycol 1000 succinate nanoparticles,
Biomaterials, 2011, 32, 2969–2978.
and B. Zhang, Multifunctional reduction-responsive
SPIO&DOX-loaded PEGylated polymeric lipid vesicles for
magnetic resonance imaging-guided drug delivery,
Nanotechnology, 2016, 27, 165101.
29 H. Su, Y. Liu, D. Wang, C. Wu, C. Xia, Q. Gong, B. Song and
16 X. Q. Yang, J. J. Grailer, I. J. Rowland, A. Javadi, S. A. Hurley,
D. A. Steeber and S. Q. Gong, Multifunctional SPIO/DOX-
loaded wormlike polymer vesicles for cancer therapy and
MR imaging, Biomaterials, 2010, 31, 9065–9073.
H.
Ai,
Amphiphilic
starlike
dextran
wrapped
superparamagnetic iron oxide nanoparticle clusters as
effective magnetic resonance imaging probes, Biomaterials,
2013, 34, 1193–1203.
17 Y. A. Luqmani, Mechanisms of drug resistance in cancer 30 K. Mai, S. Zhang, B. Liang, C. Gao, W. Du and L. M. Zhang,
chemotherapy, Med. Princ. Pract., 2005, 14(1), 35–48.
18 Y. Chen, H. Chen and J. Shi, Inorganic nanoparticle-based
drug codelivery nanosystems to overcome the multidrug
Water soluble cationic dextran derivatives containing
poly(amidoamine) dendrons for efficient gene delivery,
Carbohydr. Polym., 2015, 123, 237–245.
resistance of cancer cells, Mol. Pharm., 2014, 11, 2495– 31 H. Sun, B. Guo, X. Li, R. Cheng, F. Meng, H. Liu and
2510.
Z. Zhong, Shell-sheddable micelles based on dextran-SS-
poly(epsilon-caprolactone) diblock copolymer for efficient
intracellular release of doxorubicin, Biomacromolecules,
2010, 11, 848–854.
19 M. A. Azagarsamy, P. Sokkalingam and S. Thayumanavan,
Enzyme-triggered
amphiphilic nanocontainers, J. Am. Chem. Soc., 2009, 131,
14184–14185.
disassembly
of
dendrimer-based
32 Z. Liu, Y. Jiao, Y. Wang, C. Zhou and Z. Zhang,
Polysaccharides-based nanoparticles as drug delivery
systems, Adv. Drug Delivery Rev., 2008, 60, 1650–1662.
20 S. Yu, C. He, J. Ding, Y. Cheng, W. Song, X. Zhuang and
X. Chen, pH and reduction dual responsive polyurethane
triblock copolymers for efficient intracellular drug delivery, 33 H. K. Yang and L. M. Zhang, New amphiphilic
So Matter, 2013, 9, 2637–2645.
21 Z. Wang, H. Mohwald and C. Gao, Preparation and redox-
controlled reversible response of ferrocene-modied
glycopolypeptide conjugate capable of self-assembly in
water into reduction-sensitive micelles for triggered drug
release, Mater. Sci. Eng., C, 2014, 41, 36–41.
poly(allylamine hydrochloride) microcapsules, Langmuir, 34 J. Lu, S. Ma, J. Sun, C. Xia, C. Liu, Z. Wang, X. Zhao, F. Gao,
2011, 27, 1286–1291.
22 G. Liu and C.-M. Dong, Photoresponsive Poly(S-(o-
Q. Gong, B. Song, X. Shuai, H. Ai and Z. Gu, Manganese
ferrite nanoparticle micellar nanocomposites as MRI
contrast agent for liver imaging, Biomaterials, 2009, 30,
2919–2928.
nitrobenzyl)-L-cysteine)-b-PEO from
Carboxyanhydride Monomer: Synthesis, Self-Assembly, and
a
L-Cysteine N-
Phototriggered Drug Release, Biomacromolecules, 2012, 13, 35 J. W. Bulte, Y. Hoekstra, R. L. Kamman, R. L. Magin,
1573–1583.
A. G. Webb, R. W. Briggs, K. G. Go, C. E. Hulstaert,
S. Miltenyi, T. H. The, et al., Specic MR imaging of
human lymphocytes by monoclonal antibody-guided
dextran-magnetite particles, Magn. Reson. Med., 1992, 25,
148–157.
23 A. Zhang, Z. Zhang, F. Shi, J. Ding, C. Xiao, X. Zhuang, C. He,
L. Chen and X. Chen, Disulde crosslinked PEGylated starch
micelles as efficient intracellular drug delivery platforms,
So Matter, 2013, 9, 2224–2233.
24 T. Thambi, H. Y. Yoon, K. Kim, I. C. Kwon, C. K. Yoo and 36 Y. X. Wang, Superparamagnetic iron oxide based MRI
J. H. Park, Bioreducible block copolymers based on
poly(ethylene glycol) and poly(gamma-benzyl L-glutamate)
contrast agents: Current status of clinical application,
Quant. Imag. Med. Surg., 2011, 1, 35–40.
for intracellular delivery of camptothecin, Bioconjugate 37 H. K. Yang and L. M. Zhang, New amphiphilic
Chem., 2011, 22, 1924–1931.
25 D. P. Jones, J. L. Carlson, P. S. Samiec, P. Sternberg Jr,
V. C. Mody Jr, R. L. Reed and L. A. Brown, Glutathione
glycopolypeptide conjugate capable of self-assembly in
water into reduction-sensitive micelles for triggered drug
release, Mater. Sci. Eng., C, 2014, 41, 36–41.
measurement in human plasma. Evaluation of sample 38 N. Pahimanolis, A.-H. Vesterinen, J. Rich and J. Seppala,
collection, storage and derivatization conditions for
analysis of dansyl derivatives by HPLC, Clin. Chim. Acta,
1998, 275, 175–184.
Modication of dextran using click-chemistry approach in
aqueous media, Carbohydr. Polym., 2010, 82, 78–82.
39 X. Jiang, J. Liu, L. Xu and R. Zhuo, Disulde-Containing
Hyperbranched Polyethylenimine Derivatives via Click
Chemistry for Nonviral Gene Delivery, Macromol. Chem.
Phys., 2011, 212, 64–71.
26 G. Saito, J. A. Swanson and K. D. Lee, Drug delivery strategy
utilizing conjugation via reversible disulde linkages: role
114530 | RSC Adv., 2016, 6, 114519–114531
This journal is © The Royal Society of Chemistry 2016