R. Hashim et al. / Carbohydrate Research 346 (2011) 2948–2956
2955
3
3
3
CH2), 0.90 (t, 6H, 2 CH3) ppm; J1,2 = 3.5, J2,3 = 10.0, J5,6a = 2.5,
3J5,6b = 5.0, 2J6 = 11.5 Hz.
Peracetate, 1H NMR (400 MHz, CDCl3): d = 5.44 (dd ꢀ t, H-3),
5.03 (dd ꢀ t, H-4), 5.01 (d, H-1), 4.81 (dd, H-2), 4.23 (dd, H-6a),
4.06 (dd, H-6b), 3.69 (2 dt, a-CH2a, 2 diastereomers due to racemic
Guerbet alcohol), 3.58 (ddd, H-5), 3.22 (dd,
a-CH2b), 2.06, 2.01,
2.00, 1.99 (4s, 4 Â 3H, 4 Ac), 1.55 (mc, b-CH), 1.33–1.19 (mc, 24H,
3
3
bulk-CH2), 0.84 (2t, 2 Â 3, CH3) ppm; J1,2 = 3.5, J2,3 = 10.0,
3J3,4 = 10.0,
3J4,5 = 10.0,
3J5,6a = 4.5,
3J5,6b = 2.0,
2J6 = 12.0,
2J = 10.0 Hz.
a
6.3. 2-Decyl-tetradecyl a-D-glucopyranoside (aGlc-C14C10)
Yield: 9 %. 1H NMR (400 MHz, CD3OD): d = 4.74 (d, H-1), 3.78
(dd, H-6a), 3.69 (dd, H-6b), 3.65–3.52 (m, 3H), 3.38 (dd, H-2),
3.37–3.26 (m, 2H), 1.65 (mc, b-CH), 1.45–1.22 (m, 36H, bulk-
3
3
3
Figure 5. Orientation of interlayer directed hydroxyl groups in octyl
a-
CH2), 0.90 (t, 6H, 2 CH3) ppm; J1,2 = 3.5, J2,3 = 10.0, J5,6a = 2.5,
3J5,6b = 5.0, 2J6 = 11.5 Hz.
glycopyranoside relative to the plane involving the largest molecular axes, that is,
the head-tail connection and the connection between C-6 and O-2 of the sugar. The
OH groups face different sides of the plane in the case of the glucoside (a), but face
the same side in the case of the galactoside (b).
Peracetate, 1H NMR (400 MHz, CDCl3): d = 5.45 (dd ꢀ t, H-3),
5.03 (dd ꢀ t, H-4), 5.02 (d, H-1), 4.81 (dd, H-2), 4.23 (dd, H-6a),
4.06 (dd, H-6b), 3.70 (mc,
a-CH2a), 3.58 (ddd, H-5), 3.23 (dd, a-
CH2b), 2.07, 2.03, 2.02, 2.00 (4s, 4 Â 3H, 4Ac), 1.56 (mc, b-CH),
1.33–1.18 (mc, 36 H, bulk-CH2), 0.89 (t, 2 Â 3, CH3) ppm;
5. Conclusions
3
3
3
3
3
3J1,2 = 3.5, J2,3 = 10.0, J3,4 = 10.0, J4,5 = 10.0, J5,6a = 4.5, J5,6b = 2.0,
2J6 = 12.0, 2J = 10.0 Hz.
The present work aims to demonstrate a possible epimeric–
a
anomeric relationship in pyranoside lipids, namely
a-gluco/b-
Acknowledgements
galactoside and -galacto-/b-glucoside. Both single and double
a
chain glycolipids were investigated to confirm the hypothesis; thus
the behavior applies to lamellar as well as to columnar assemblies.
However, due to the formation of a micellar phase in between
these two assembly types, the correlation does not match for a lim-
ited chain range of branched glycosides, that is, the Guerbet C16
(C10C6). This may be because the micellar phase is not liquid crys-
talline with a definite structural arrangement, or it could simply be
due to a purity issue of the samples (anomeric impurities as well as
traces of water). Relative clearing temperatures of lamellar sys-
tems can be explained by intralayer hydrogen bonding, which is
highly affected by the relative orientation of the 4-OH group and
the anomerically bonded aglycon.
R.H. thanks both the University of Malaya and the Osaka Sangyo
University for supporting her sabbatical leave, during which this
work was written. The grant UM.C/625/1/HIR/MOHE/05 is grate-
fully acknowledged.
References
1. Baron, M. Recomm. Pure Appl. Chem. 2001, 73.
2. Holmberg, K. Curr. Opin. Colloid Interface Sci. 2001, 6, 148–159.
3. Vill, V.; Hashim, R. Curr. Opin. Colloid Interface Sci. 2002, 7, 395–409.
4. Vill, V.; Fischer, F.; Thiem, J. Z. Naturforsch. 1988, 43a.
5. Abeygunaratne, S.; Hashim, R.; Vill, V. Phys. Rev. E: Stat. Nonlin. Soft Matter Phys.
2006, 73, 011916.
6. Liao, G.; Zewe, S. K.; Hagerty, J.; Hashim, R.; Abeygunaratne, S.; Vill, V.; Jákli, A.
Liquid Crystals 2006, 33, 361–366.
7. Athenstaedt, H. Naturwissenschaften 1961, 48, 465–472.
8. Miyajima, D.; Araoka, F.; Takezoe, H.; Kim, J.; Kato, K.; Takata, M.; Aida, T. J. Am.
Chem. Soc. 2010, 132, 8530–8531.
6. Experimental
6.1. Synthesis of a-glycosides
9. Takezoe, H. Polar Order in Columnar Phase of Glycolipids (personal
communication), 2007–2010.
A solution of b-glucose/galactose pentaacetate (4.5 mmol) and
the Guerbet alcohol (1.4 equiv) in dichloromethane (100 mL) was
treated with tin tetrachloride (1 equiv) and stirred at rt for 2 days.
The reaction mixture was filtered through water treated Celite be-
fore washing with saturated sodium bicarbonate solution. After
drying over magnesium sulfate the solvent was evaporated. The
residue was taken up in acetonitrile and the solution was extracted
with hexane. The acetonitrile phase was concentrated and the
crude acetylated glucosides were subjected to chromatography
10. Jeffrey, G. A. Acc. Chem. Res. 1986, 19, 168–173.
11. Jeffrey, G. A. Acta Crystallogr., Sect. B 1990, 46, 89–103.
12. Vill, V.; Böcker, T.; Thiem, J.; Fischer, F. Liq. Cryst. 1989, 6, 349–356.
13. Vill, V. LiqCryst 4.2, Fujitsu FQS, Fukuoka, 2002.
14. Vill, V.; von Minden, H. M.; Koch, M. H.; Seydel, U.; Brandenburg, K. Chem. Phys.
Lipids 2000, 104, 75–91.
15. von Minden, H. M.; Brandenburg, K.; Seydel, U.; Koch, M. H.; Garamus, V.;
Willumeit, R.; Vill, V. Chem. Phys. Lipids 2000, 106, 157–179.
16. Mannock, D. A.; Collins, M. D.; Kreichbaum, M.; Harper, P. E.; Gruner, S. M.;
McElhaney, R. N. Chem. Phys. Lipids 2007, 148, 26–50.
17. Hato, M.; Minamikawa, H.; Tamada, K.; Baba, T.; Tanabe, Y. Adv. Colloid
Interface Sci. 1999, 80, 233–270.
using hexane and ethyl acetate. The pure
a-fraction was collected
18. Hashim, R.; Hashim, H. H. A.; Rodzi, N. Z. M.; Hussen, R. S. D.; Heidelberg, T.
Thin Solid Films 2006, 509, 27–35.
and subsequently deacetylated in methanol with
a
catalytic
amount of sodium methoxide. The catalyst was removed by treat-
ment with Amberlite IR-120 and the solvent was evaporated to
provide the glucoside, which was finally dried at 50 °C in high vac-
uum over phosphorus pentoxide overnight.
19. O’Lenick, A. J.
20. Brooks, N. J.; Hamid, H. A. A.; Hashim, R.; Heidelberg, T.; Seddon, J. M.; Conn, C.
E.; Husseini, S. M. M.; Zahid, N. I. M.; Hussen, R. S. D. Liq. Cryst., 2011.
21. Kikuchi, Y.; Tanaka, Y.; Sutarto, S.; Kobayashi, K.; Toi, H.; Aoyama, Y. J. Am.
Chem. Soc. 1992, 114, 10302–10306.
22. Kikuchi, Y.; Toi, H.; Aoyama, Y. B. Chem. Soc. Jpn. 1993, 66, 1856–1858.
23. Nilsson, F.; Söderman, O.; Johansson, I. J. Colloid Interface Sci. 1998, 203, 131–
139.
24. Rodzi, N. B. M. Branched Chain Galactosides and Melibiosides: Synthesis and
Mesomorphic Properties; University of Malaya: Kuala Lumpur, 2006 (M.Sc.).
25. Sakya, P.; Seddon, J. M.; Vill, V. Liq. Cryst. 1997, 23, 409–424.
6.2. 2-Hexyl-decyl a-D-glucopyranoside (aGlc-C10C6)
Yield: 12%. 1H NMR (400 MHz, CD3OD): d = 4.74 (d, H-1), 3.78
(dd, H-6a), 3.68 (dd, H-6b), 3.66–56 (m, 3H), 3.39 (dd, H-2),
3.36–3.27 (m, 2H), 1.65 (mc, b-CH), 1.45–1.22 (m, 24H, bulk-