Green Chemistry
Communication
−
1
β-hydride elimination (TS-3, 30.9 kcal mol ) takes place to
S. J. Mehrman, Org. Process Res. Dev., 2006, 10, 971–1031;
(c) A. Seayad, M. Ahmed, H. Klein, R. Jackstell, T. Gross and
M. Beller, Science, 2002, 297, 1676–1678; (d) S. Kobayashi
and H. Ishitani, Chem. Rev., 1999, 99, 1069–1094.
2 (a) A. Corma, J. Navas and M. J. Sabater, Chem. Rev., 2018,
118, 1410–1459; (b) X. Ma, C. Su and Q. Xu, Top. Curr.
Chem., 2016, 374, 27; (c) A. J. A. Watson and
J. M. J. Williams, Science, 2010, 329, 635–636.
−1
provide IM-8 (26.6 kcal mol ). The overall barrier for the
inner-sphere dehydrogenation is 30.9 kcal mol relative to
Cat-1, which is 5.6 kcal mol higher than that of the outer-
sphere pathway. The yielded aldehyde reacts with an amine to
form an imine for the subsequent hydrogenation step. DFT
−
1
−
1
results suggest that the outer-sphere hydrogenation (TS-5,
1
1
5.2 kcal mol− ) is also more favored than the inner-sphere
−
1
hydrogenation (TS-6, 33.7 kcal mol ). Therefore, both the
dehydrogenation and hydrogenation steps prefer the outer-
sphere mechanism, and the RDS is the dehydrogenation of the
alcohol, which is consistent with our KIE results (KIE = 2.47).
Moreover, DFT results support the bifunctional role of the
NHC-2-HP ligand, which is in accordance with the signifi-
cantly reduced activity observed when the hydroxyl group was
replaced with hydrogen (entry 6, Table 1). It should be noted
that we observed comparable activity for complex 9a with the
OMe group (entry 5, Table 1), which might be attributed to the
electron donation effect, the possible second coordination
sphere hydrogen-bonding effect, or the conversion of the OMe
group to the OH group to a certain extent under reaction
3 (a) J. J. A. Celaje, X. Zhang, F. Zhang, L. Kam, J. R. Herron
and T. J. Williams, ACS Catal., 2017, 7, 1136–1142;
(b) K. O. Marichev and J. M. Takacs, ACS Catal., 2016, 6,
2205–2210; (c) X. Xie and H. V. Huynh, ACS Catal., 2015, 5,
4143–4151; (d) A. B. Enyong and B. Moasser, J. Org. Chem.,
2014, 79, 7553–7563; (e) F. E. Fernández, M. C. Puerta and
P. Valerga, Organometallics, 2012, 31, 6868–6879;
(f) M. H. S. A. Hamid, C. L. Allen, G. W. Lamb,
A. C. Maxwell, H. C. Maytum, A. J. A. Watson and
J. M. J. Williams, J. Am. Chem. Soc., 2009, 131, 1766–1774.
4 (a) P. Liu, R. Liang, L. Lu, Z. Yu and F. Li, J. Org. Chem.,
2017, 82, 1943–1950; (b) J.-Q. Li and P. G. Andersson,
Chem. Commun., 2013, 49, 6131–6133; (c) A. Bartoszewicz,
R. Marcos, S. Sahoo, A. K. Inge, X. Zou and B. Martín-
1
9
conditions.
In conclusion, we have developed a series of bifunctional
Cp*Ir complexes 8a–e, which bear picolyl-functionalized
N-heterocyclic carbene ligands with a pendant OH group.
These complexes are efficient catalysts for the N-alkylation of
anilines or sulfonamides with alcohols in aqueous media
under base-free conditions. A wide variety of primary alcohols
and (hetero)aromatic amines or p-methylbenzenesulfonamide
were efficiently converted into mono-N-alkylated amines in
good-to-excellent isolated yields. Notably, the present bifunc-
tional catalytic system through an outer-sphere (de)hydrogen-
ation mechanism provides guidelines for the development of
NHC complexes for reactions in aqueous media.
Matute, Chem.
(d) S. Michlik and R. Kempe, Chem. – Eur. J., 2010, 16,
13193–13198.
–
Eur. J., 2012, 18, 14510–14519;
5 (a) G. Zhang, Z. Yin and S. Zheng, Org. Lett., 2016, 18, 300–
303; (b) M. Mastalir, G. Tomsu, E. Pittenauer, G. Allmaier
and K. Kirchner, Org. Lett., 2016, 18, 3462–3465;
(c) S. Rösler, M. Ertl, T. Irrgang and R. Kempe, Angew.
Chem., Int. Ed., 2015, 54, 15046–15050.
6 (a) T. Yan, B. L. Feringa and K. Barta, ACS Catal., 2016, 6,
381–388; (b) H.-J. Pan, T. W. Ng and Y. Zhao, Chem.
Commun., 2015, 51, 11907–11910; (c) T. Yan, B. L. Feringa
and K. Barta, Nat. Commun., 2014, 5, 5602; (d) M. Bala,
P. K. Verma, U. Sharma, N. Kumar and B. Singh, Green
Chem., 2013, 15, 1687–1693.
Conflicts of interest
7 (a) S. Elangovan, J. Neumann, J.-B. Sortais, K. Junge,
C. Darcel and M. Beller, Nat. Commun., 2016, 7, 12641;
There are no conflicts to declare.
(
b) A. Bruneau-Voisine, D. Wang, V. Dorcet, T. Roisnel,
C. Darcel and J.-B. Sortais, J. Catal., 2017, 347, 57–62.
8
9
(a) A. Fernandes and B. Royo, ChemCatChem, 2017, 9,
Acknowledgements
3912–3917; (b) P. Qu, C. Sun, J. Ma and F. Li, Adv. Synth.
Catal., 2014, 356, 447–459; (c) R. Kawahara, K. Fujita and
R. Yamaguchi, Adv. Synth. Catal., 2011, 353, 1161–
This work was supported by the NSFC (21473261, 21673301,
and 21502023), the Guangdong Natural Science Funds for
Distinguished Young Scholar (No. 2015A030306027), the Tip-
top Youth Talents of Guangdong special support program
1
168; (d) O. Saidi, A. J. Blacker, M. M. Farah, S. P. Marsden
and J. M. J. Williams, Chem. Commun., 2010, 46,
541–1543.
(a) T. P. Goncalves and K.-W. Huang, J. Am. Chem. Soc.,
017, 139, 13442–13449; (b) P. A. Dub, B. L. Scott and
J. C. Gordon, J. Am. Chem. Soc., 2017, 139, 1245–1260;
c) J. R. Khusnutdinova and D. Milstein, Angew. Chem., Int.
1
(No. 20153100042090537) and the Fundamental Research
Funds for the Central Universities. Computing facilities were
supported in part by the National Supercomputing Center in
Guangzhou and Zhengzhou.
2
(
Ed., 2015, 54, 12236–12273; (d) T. Zell and D. Milstein,
Acc. Chem. Res., 2015, 48, 1979–1994; (e) S. Kuwata and
T. Ikariya, Chem. Commun., 2014, 50, 14290–14300;
(f) H. Grützmacher, Angew. Chem., Int. Ed., 2008, 47,
1814–1818.
Notes and references
1
(a) E. Vitaku, D. T. Smith and J. T. Njardarson, J. Med.
Chem., 2014, 57, 10257–10274; (b) A. F. Abdel-Magid and
This journal is © The Royal Society of Chemistry 2018
Green Chem.