L. Yang et al. / Tetrahedron Letters 49 (2008) 2882–2885
2885
Schlummer, B.; Hartwig, J. F. Org. Lett. 2002, 4, 1471; (b) Anderson,
L. L.; Arnold, J.; Bergman, R. G. J. Am. Chem. Soc. 2005, 127,
References and notes
´
14542; (c) Marcsekova, I.; Doye, S. Synthesis 2007, 145; (d)
1. (a) Mizuno, N.; Misono, M. Chem. Rev. 1998, 98, 199; (b) Timofeeva,
M. N. Appl. Catal. A 2003, 256, 19; (c) Firouzabadi, B.; Iranoor, N.;
Jafari, A. A. Synlett 2005, 299.
2. Firouzabadi, H.; Iranpoor, N.; Amani, K. Synthesis 2003, 408.
3. Das, J.; Parida, K. M. J. Mol. Catal. A: Chem. 2007, 264, 248.
4. (a) Kaur, J.; Griffin, K.; Harrison, B.; Kozhevnikov, I. V. J. Catal.
2002, 208, 448; (b) Lan, K.; Fen, S.; Shan, Z.-X. Aust. J. Chem. 2007,
60, 80.
5. (a) Azizi, N.; Torkiyan, L.; Saidi, M. R. Org. Lett. 2006, 8, 2079; (b)
Rasalkar, M. S.; Bhilare, S. V.; Deorukhkar, A. R.; Darvatkar, N. B.;
Salunkhe, M. M. Can. J. Chem. 2007, 85, 77; (c) Wang, E.; Huang, T.-
K.; Shi, L.; Li, B.-G.; Lu, X.-X. Synlett 2007, 2197.
6. Firouzabadi, H.; Iranpoor, N.; Jafari, A. A. J. Organomet. Chem.
2005, 690, 1556.
7. Azizi, N.; Saidi, M. R. Tetrahedron 2007, 63, 888.
8. Dias, A. S.; Lima, S.; Pillinger, M.; Valente, A. A. Carbohydr. Res.
2006, 341, 2946.
9. (a) Bytschkov, I.; Doye, S. Eur. J. Org. Chem. 2003, 935; (b) Xu, L.
W.; Xia, C. G. Eur. J. Org. Chem. 2005, 633; (c) Hultzsch, C. . Adv.
Synth. Catal. 2005, 347, 367; (d) Matsunaga, S. J. Synth. Org. Chem.
Jpn. 2006, 64, 778.
10. (a) Qian, H.; Widenhoefer, R. A. Org. Lett. 2005, 7, 2635; (b)
Karshtedt, D.; Bell, A. T.; Tilley, T. D. J. Am. Chem. Soc. 2005, 127,
12640.
Ackermann, L.; Kaspar, L. T.; Althammer, A. Org. Biomol. Chem.
2007, 5, 1975.
16. Lingaiah, N.; Seshu Babu, N.; Mohan Reddy, K.; Sai Prasad, P. S.;
Suryanarayana, I. Chem. Commun. 2007, 278.
17. Mizushima, E.; Hayashi, T.; Tanaka, M. Org. Lett. 2003, 5, 3349.
18. A typical procedure for intermolecular addition reactions of amides or
carbamates to olefins: Into a test tube were placed H3SiW12O40ÁnH2O
(100 mg), NH2Ts (1 mmol), CH2ClCH2Cl (2 ml), and cyclohexene
(2 mmol). After sealing, the reaction mixture was heated at 85 °C and
stirred vigorously for 18 h. After the reaction completed, the mixture
was concentrated in vacuo to remove the DCE. The product was
purified by column chromatography (ethyl acetate/petroleum = 1/10–
1/5) to gain the analytically pure product (91% isolated yield). All the
known compounds were determined by GC–MS or NMR. The
spectral data of some representative products are given below.
N-Cyclohexyl p-toluenesulfonamide (Table 2, entry 2): 1H NMR
(400 MHz) d 7.77 (d, J = 8.0 Hz, 2H), 7.28–7.26 (d, J = 8.0 Hz, 2H),
4.55 (d, J = 6.4 Hz, 1H), 3.10–3.07 (m, 1H), 2.40 (s, 3H), 1.73–1.70
(m, 2H), 1.62–1.58 (m, 2H), 1.50–1.46 (m, 1H), 1.29–1.06 (m, 5H). 13
NMR (100 MHz) d 143.09, 138.40, 129.60, 126.90, 52.53, 33.89, 25.10,
24.60, 21.51. GC–MS, m/z 253.
N-Cyclopentyl p-toluenesulfonamide (Table 2, entry 1): 1H NMR
(400 MHz) d 7.75 (d, J = 8.0 Hz, 2H), 7.26 (d, J = 15.6 Hz, 2H), 4.96
(s, 1H), 3.56–3.51 (m, 1H), 2.44 (s, 3H), 1.73–1.70 (m, 2H), 1.64–1.59
(m, 2H), 1.52–1.46 (m, 1H), 1.25–1.08 (m, 5H). 13C NMR (100 MHz)
d 143.15, 137.77, 129.59, 127.06, 55.06, 33.30, 23.05, 21.47. GC–MS,
m/z 239.
C
11. (a) Zhang, J.-L.; Yang, C.-G.; He, C. J. Am. Chem. Soc. 2006, 128,
1798; (b) Liu, X.; Li, C.; Che, C. Org. Lett. 2006, 8, 2707; (c) Bender,
C. F.; Widenhoefer, R. A. Org. Lett. 2006, 8, 5303; (d) Brouwer, C.;
He, C. Angew. Chem., Int. Ed. 2006, 45, 1744.
N-exo-bicyclo[2.2.1]hept-2-yl-p-toluenesulfonamide (Table 2, entry
7): 1H NMR (400 MHz) d 7.73 (d, J = 7.2 Hz, 2H), 7.28 (d,
J = 7.6 Hz, 2H), 4.61 (d, J = 6.4 Hz, 1H), 3.10 (s, 1H), 2.41 (s, 3H),
2.16 (s, 1H), 2.07 (s, 1H), 1.59–1.54 (m, 1H), 1.43–1.38 (m, 2H), 1.31–
1.29 (m, 2H), 1.15–1.03 (m, 2H), 0.99–0.87 (m, 2H). 13C
NMR(100 MHz) d 143.19, 137.84, 129.63, 127.06, 56.61, 42.44,
40.74, 35.54, 35.14, 27.96, 26.27, 21.51. GC–MS, m/z 265.
Cyclohex-2-enyl-p-toluenesulonamide (Table 2, entry 12): 1H NMR
(400 MHz) d 7.75 (d, J = 7.6 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 5.71
(d, J = 10 Hz, 1H), 5.31 (d, J = 10.4 Hz, 1H), 4.84 (d, J = 8.4 Hz,
1H), 3.765 (s, 1H), 2.39 (s, 3H), 1.94–1.77 (m, 2H), 1.74–1.61 (m, 1H),
1.57–1.50 (m, 3H). 13C NMR(100 MHz) d 143.14, 138.24, 131.39,
129.60, 126.95, 126.91, 48.89, 30.12, 24.38, 21.45, 19.22. GC–MS, m/z
251.
12. Taylor, J. G.; Whittall, N.; Hii, K. K. Org. Lett. 2006, 8, 3561.
13. Michaux, J.; Terrasson, V.; Marque, S. P.; Wehbe, D.; Campagne, J.
M. Eur. J. Org. Chem. 2007, 2601.
14. (a) Huang, J.; Wong, C. M.; Xu, F.; Loh, T. P. Tetrahedron Lett.
2007, 48, 3375; (b) Qin, H.; Yamagiwa, N.; Matsunaga, S.; Shibasaki,
M. Chem. Asian J. 2007, 2, 150; (c) Qin, H.; Yamagiwa, N.;
Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2006, 128, 1611.
15. (a) Talluri, S. K.; Sudalai, A. Org. Lett. 2005, 7, 855; (b) Li, Z.;
Zhang, J.; Brouwer, C.; Yang, C.-G.; Reich, N. W.; He, C. Org. Lett.
2006, 8, 4175; (c) Rosenfeld, D. C.; Shekhar, S.; Takemiya, A.;
Utsunomiya, M.; Hartwig, J. F. Org. Lett. 2006, 8, 4179; (d)
Motokura, K.; Nakagiri, N.; Mori, K.; Mizugaki, T.; Ebitani, K.;
Jitsukawa, K.; Kaneda, K. Org. Lett. 2006, 8, 4617. Selected examples
of hydroamination with amines catalyzed by Brønsted acids: (a)