Please do not adjust margins
RSC Advances
Page 5 of 7
DOI: 10.1039/C6RA23364C
Journal Name
COMMUNICATION
The racemization study of the synthesized N-arylated amino
acids was performed on HPLC using a ChiralPak WH column
and a mobile phase of 0.25 mM copper(II) sulfate in water
(93%) and 2-propanol (7%) for 180 min. The column
Fairlie, S. Liras and D. Price, Chem. Biol. Drug Des., 2013, 81
,
136; (c) F. Albericio and H. G. Kruger, Future Med. Chem.,
2012,
2000,
4
, 1527; (d) D. A. Dougherty, Curr. Opin. Chem. Biol.
4, 645.
o
temperature was kept at 50 C, and the flow rate of 1 mL/min
(4) (a) S. Royo-Gracia, K. Gaus and N. Sewald, Future Med.
Chem., 2009, , 1289; (b) A. Grauer and B. Konig, Eur. J. Org.
was fixed for analysis. For the purpose of comparision, we also
undertook the synthesis of N-phenyl-DL-valine. The chiral
purity of N-phenyl-L-valine (2a), N-phenyl-D-valine (4c), and N-
1
Chem., 2009, 30, 5099.
(5) (a) I. P. Beletskaya and A. V. Cheprakov, Coord. Chem. Rev.,
2004, 248, 2337; (b) C. Fischer and B. Koenig, Beilstein J. Org.
phenyl-DL-valine under the optimized conditions was
examined, and it was found that enantiomeric purity of N-
phenyl-L-valine and N-phenyl-D-valine remained intact during
Chem., 2011, 7, 59; (c) J. F. Hartwig, Angew. Chem. Int. Ed.,
the copper(I)-catalyzed transformation (please see, SI). It is
evident that the use of zwitterionic amino acids prevents the
1998, 37, 2046; (d) L. Jiang and S. L. Buchwald, Palladium-
Catalyzed Aromatic Carbon-Nitrogen Bond Formation, Wiley-
VCH: Weinheim, 2nd edn, 2004, p. 699; (e) E. M. Beccalli, G.
Broggini, M. Martinelli and S. Sottocornola, Chem. Rev., 2007,
107, 5318. (f) B. H. Yang, and S. L. Buchwald, J. Organomet.
Chem., 2009, 576, 125.
base-mediated α-proton abstraction, resulting in intact
enantiomeric integrity of the arylated amino acids.
In conclusion, we have successfully developed an efficient,
rapid, environmentally benign, gram-scalable, practical and
experimentally safe approach for the N-(hetero)arylation of
amino acids under mild conditions using inexpensive aryl
bromides as coupling partners. This protocol allow low catalyst
and ligand loading for N-arylation transformation in 50 min
under MW irradiation and uses copper(I) iodide as catalyst, 2-
isobutyrylcyclohexanone (L11) as ligand and PEG-400 as
(6) H. Zhang, Q. Cai and D. Ma, J. Org. Chem., 2005, 70, 5164.
(7) (a) F. Ullmann, Chem. Ber., 1903, 36, 2382; (b) F. Ullmann
and P. Sponagel, Chem. Ber., 1905, 38, 2211.
(8) For selected reviews on copper-catalyzed cross coupling
reactions, see: (a) I. P. Beletskaya and A. V. Cheprakov, Coord.
additive in water. This catalytic transformation readily coupled Chem. Rev., 2004, 248, 2337; (b) S. V. Ley and A. W. Thomas,
ortho-, meta-, and para-positions reactive functional group
containing aryl bromides in high yields. This protocol is equally
applicable to access challenging N-heteroarylated amino acids
under the identical reaction conditions. By using this protocol,
various α- and β- natural and unnatural amino acids were N-
arylated in high yields. The application of method on fully
unprotected zwitterionic amino acids provides scaffolds that
could be easily modified at either of the terminus rendering
them suitable for immediate assembly in a peptide-based
structure. Chiral HPLC study shows that enantiomeric purity of
the product during N-arylation of zwitterionic amino acid
Angew. Chem., Int. Ed., 2003, 42, 5400; (c) K. Kunz, U. Scholz
and D. Ganzer, Synlett, 2003, 15, 2428.
(9) (a) R. K. Gujadhur, C. G. Bates and D. Venkataraman, Org.
Lett., 2001,
and S. L. Buchwald, J. Org. Chem., 2004, 69, 5578; (c) L. Jiang,
G. E. Job, A. Klapars and S. L. Buchwald, Org. Lett., 2003,
3, 4315; (b) J. C. Antilla, J. M. Baskin, T. E. Barder
5,
3667; (d) J. C. Antilla, A. Klapars and S. L. Buchwald, J. Am.
Chem. Soc., 2002, 124, 11684; (e) F. Y. Kwong, A. Klapars and S.
L. Buchwald, Org. Lett., 2002,
Buchwald, Org. Lett., 2003, , 793; (g) H.-J. Cristau, P. P. Cellier,
, 695;
4, 581; (f ) F. Y. Kwong and S. L.
5
remains intact. Most importantly, this methodology opens up J.-F. Spindler and M. Taillefer, Eur. J. Org. Chem., 2004,
4
new perspectives for the synthesis of N-arylated amino acids
under environmentally benign conditions in a cost-effective
manner. Further application of N-(hetero)arylated amino acids
in search of the bioactive peptides and peptidomimetics is
currently under investigation.
(h) H.-J. Cristau, P. P. Cellier, J.-F. Spindler and M. Taillefer,
Chem. - Eur. J., 2004, 10, 5607; (i) S. Zhang, D. Zhang and L. S.
Liebeskind, J. Org. Chem., 1997, 62, 2312; (j) D. Ma, Y. Zhang, J.
Yao, S. Wu and F. Tao, J. Am. Chem. Soc., 1998, 120, 12459; (k)
D. Ma, Q. Cai and H. Zhang, Org. Lett., 2003, 5, 2453; (l) D.
Acknowledgements
Jiang, H. Fu, Y. Jiang and Y. Zhao, J. Org. Chem., 2007, 72, 672;
(m) X. Lv and W. Bao, J. Org. Chem., 2007, 72, 3863; (n) A.
Shafir and S. L. Buchwald, J. Am. Chem. Soc., 2006, 128, 8742;
(o) W. Zhou, M. Fan, J. Yin, Y. Jiang and D. Ma, J. Am. Chem.
Soc., 2015, 137, 11942.
†Krishna K. Sharma thanks University Grant commission (UGC), New
Delhi, India for the award of Senior Research Fellowship.
Notes and references
(1) A. F. Noisier and M. A. Brimble, Chem. Rev., 2014, 114
,
8775.
(10) J. P. Greenstein and M. Wintz, Chemistry of the amino
acids, John Wiley & Sons Inc., New York, 1961, vol. 1, p. 569.
(11) (a) Y. Wang, Z. Wu, L. Wang, Z. Li and X. Zhou, Chem. - Eur.
J., 2009, 15, 8971; (b) D. Wang, F. Zhang, D. Kuang, J. Yu and J.
Li, Green Chem., 2012, 14, 1268; (c) L. Liang, Z. Li and X. Zhou,
(2) (a) A. P. Kozikowski, S. Wang, D. Ma, J. Yao, S. Ahmad, R. I.
Glazer, K. Bogi, P. Acs, S. Modarres, N. E. Lewin, and P. M.
Blumberg, J. Med. Chem. 1997, 40, 1316; (b) G. A. Doherty, T.
Kamenecka, E. McCauley, G. Van Riper, R. A. Mumford, S.
Tong, and W. K. Hagmann, Bioorg. Med. Chem. Lett. 2002, 12
,
Org. Lett., 2009, 11
, 3294; (d) J. Engel-Andreasen, B.
729; (c) J. Lee, C. Reynolds, M. C. Jetter, M. A. Youngman, D. J.
Hlasta, S. L. Dax, D. J. Stone, S.-P. Zhang, and E. E. Codd,
Bioorg. Med. Chem. Lett. 2003, 13, 1879; (d) W. G. Thomas and
F. A. Mendelsohn, Int. J. Biochem. Cell Biol., 2003, 35, 774; (e)
Y. Endo, K. Shudo, K. Furuhata, H. Ogura, S. Sakai, N. Aimi, Y.
Shimpukade and T. Ulven, Green Chem., 2013, 15, 336.
(12) (a) Z. Lu and R. J. Twieg, Tetrahedron Lett., 2005, 46, 2997;
(b) S. Rottger, P. J. Sjoberg and M. Larhed, J. Comb. Chem.,
2007, 9, 204.
(13) (a) S. M. King, S. L. Buchwald, Org. Lett., 2016, 18, 4128;
(b) M. G. Organ, S. Sharif, D. Mitchell, M. Rodriguez and J. L.
Farmer, Chem. - Eur. J., 2016, DOI: 10.1002/chem.201603933.
Hitotsuyanagi and Y. Koyama, Chem. Pharm. Bull., 1984, 32
,
358.
(3) (a) B. E. I. Ramakers, J. C. M. van Hest and D. W. P. M.
Löwik, Chem. Soc. Rev., 2014, 43, 2743; (b) D. J. Craik, D. P.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins