S. Hu et al.
Acknowledgments
This study was supported by the National Science Foundation of
China (Grant No. 21172149) and the Science Technology Depart-
ment of Zhejiang Province (Grant No. 2012R10014-15).
References
[1] V. Farina, Adv. Synth. Catal. 2004, 346, 1553.
[2] H.-U. Blaser, A. Indolese, F. Naud, U. Nettekoven, A. Schnyder, Adv.
Synth. Catal. 2004, 346, 1583.
[3] A. Zapf, M. Beller, Chem. Commun. 2005, 431.
[4] K. C. Nicolaou, P. G. Bulger, D. Sarlah, Angew. Chem. Int. Ed. 2005, 44,
4442.
[5] G. Zeni, R. C. Larock, Chem. Rev. 2006, 106, 4644.
[6] L. Yin, J. Liebscher, Chem. Rev. 2007, 107, 133.
[7] M. Zeng, Y. Du, L. Shao, C. Qi, X. M. Zhang, J. Org. Chem. 2010,
75, 2556.
[8] Transition Metals for Organic Synthesis: Building Blocks and Fine Che-
micals (2nd edn), (Eds.: M. Beller, C. Bolm), Wiley-VCH, Weinheim,
2004.
[9] Handbook of Organopalladium Chemistry for Organic Synthesis, (Eds.:
E. Negishi, A. de Meijere), Wiley, New York, 2002.
[10] J. Hassan, M. Sévignon, C. Gozzi, E. Schulz, M. Lemaire, Chem. Rev.
2002, 102, 1359.
[11] I. Cepanec, Synthesis of Biaryls, Elsevier, Amsterdam, 2004.
[12] J. Tsuji, Palladium Reagents and Catalysts (2nd edn), Wiley, New York,
2004.
[13] T. Mizoroki, K. Mori, A. Ozaki, Bull. Chem. Soc. Jpn. 1971, 44, 581.
[14] R. F. Heck, J. P. Nolley, J. Org. Chem. 1972, 37, 2320.
[15] M. Oestreich, The Mizoroki–Heck Reaction, Wiley, Chichester, 2009.
[16] A. de Meijere, F. E. Meyer, Angew. Chem. Int. Ed. 1994, 33, 2379.
[17] W. Cabri, I. Candiani, Acc. Chem. Res. 1995, 28, 2.
[18] G. T. Crisp, Chem. Soc. Rev. 1998, 27, 427.
[19] I. P. Beletskaya, A. V. Cheprakov, Chem. Rev. 2000, 100, 3009.
[20] N. J. Whitcombe, K. K. Hii, S. E. Gibson, Tetrahedron 2001, 57, 7449.
[21] A. F. Littke, G. C. Fu, Angew. Chem. Int. Ed. 2002, 41, 4176.
[22] A. F. Littke, G. C. Fu, Org. Synth. 2004, 81, 63.
[23] F. Alonso, I. P. Beletskaya, M. Yus, Tetrahedron 2005, 61, 11771.
[24] N. T. S. Phan, M. Van der Sluys, C. W. Jones, Adv. Synth. Catal. 2006,
348, 609.
Scheme 1. Mechanism Proposed
with the substrate of acrylonitrile obtained a mixture of E-isomer
and Z-isomer with an isolation yield of 96% (E/Z = 65:35, deter-
mined by 1H NMR) (Table 3, entry 4). Otherwise, styrene derivatives
are also coped with this condition to afford linear (E)-stilbene in
good yield (Table 3, entry 5). The o-, m- and p-methyl substitution
did not affect the reaction obviously and showed good reactivity
(Table 3, entries 6–8). Disubstituent on aryl sulfinic acid salts can
also proceed smoothly, and 64% yield of product can be obtained
when encountering hindrance by two neighboring methyl groups
(Table 3, entries 9 and 10). Nevertheless, excellent coupling yield
(86% and 89%) could still be obtained when coupled with sodium
4- and 3-methoxybenzenesulfinate (entries 11 ~ 12 of Table 3,
entries 11 and 12). Notably, iodo-, bromo- or chloro- groups
seem to have trivial effects on the isolated cross-coupling yield
(Table 3, entries13–19) no matter the position of o-, m- and p-. The
phenomenon reveals that this transformation showed outstanding
functional group tolerance, as well as excellent chemoselectivity.
The introduction of an electron-withdrawing group like nitro- has
hindered the cross-coupling (Table 3, entries 20 and 21).
A possible mechanism for our desulfinylative CꢂC cross-coupling
reaction of sulfinic acid salts with vinyl substrates is shown in
Scheme 1. The DMSO molecule could coordinate with the Pd center
to stabilize/activate the catalyst to replace ancillary ligand. Step (i)
involves the nucleophilic attack of ArSO2 anion on Pd(II)X2 to afford
intermediate A. In step (ii), the ArꢂPd(II)ꢂX intermediate B (X= OAc)
was formed with concomitant loss of SO2. The addition of interme-
diate B to vinyl substrates generated intermediate C and then was
converted to HꢂPd(II)ꢂX with the release of desired products. In
step (iii), the reductive elimination from the Pd(II) complex affords
the Pd(0), and the Pd(0) catalyst is reoxidized to Pd(II) by Cu(OAc)2,
thus closing the catalytic cycle. The intermediate C was stabilized
by conjugate effect and E-isomer dominated.
[25] K. Köhler, S. S. Pröckl, W. Kleist, Curr. Org. Chem. 2006, 10, 1585.
[26] A. F. Schmidt, A. Al Halaiqa, V. V. Smirnov, Synlett 2006, 2861.
[27] G. P. McGlacken, I. J. S. Fairlamb, Eur. J. Org. Chem. 2009, 4011.
[28] A. Roglans, A. Pla-Quintana, M. Moreno-Mañas, Chem. Rev. 2006, 106,
4622.
[29] A. A. Sabino, A. H. L. Machado, C. R. D. Correia, M. N. Eberlin, Angew.
Chem. Int. Ed. 2004, 43, 2514.
[30] K. Peixoto da Silva, M. N. Godoi, C. R. D. Correia, Org. Lett. 2007, 9,
2815.
[31] F. X. Felpin, J. Coste, C. Zakri, E. Fouquet, Chem. Eur. J. 2009, 15, 7238.
[32] A. V. Moro, F. S. P. Cardoso, C. R. D. Correia, Org. Lett. 2009, 11, 3642.
[33] B. Schmidt, F. Hoelter, Chem. Eur. J. 2009, 15, 11948.
[34] B. R. Vaddula, A. Saha, J. Leazer, R. S. Varma, Green Chem. 2012 (in press).
[35] J. Li, L. Liu, Y. Zhou, S. Xu, RSC Adv. 2012, 2, 3207.
[36] A. G. Myers, D. Tanaka, M. R. Mannion, J. Am. Chem. Soc. 2002, 124, 11250.
[37] D. Tanaka, A. G. Myers, Org. Lett. 2004, 6, 433.
[38] D. Tanaka, S. P. Romeril, A. G. Myers, J. Am. Chem. Soc. 2005, 127,
10323.
[39] P. Hu, J. Kan, W. Su, M. Hong, Org. Lett. 2009, 11, 2341.
[40] S.-L. Zhang, Y. Fu, R. Shang, Q.-X. Guo, L. Liu, J. Am. Chem. Soc. 2010,
132, 638.
[41] Z. Hu, S. Huang, W. Su, M. Hong, Org. Lett. 2010, 12, 4992.
[42] A. Maehara, H. Tsurugi, T. Satoh, M. Miura, Org. Lett. 2008, 10, 1159.
[43] Z. Li, S. L. Zhang, Y. Fu, R. Shang, Q.-X. Guo, L. Liu, J. Am. Chem. Soc.
2009, 131, 8815.
Conclusion
The [Pd(OAc)2]-catalyzed cross-coupling of aryl sulfinic acid
salts with vinyl substrates has been achieved under mild reaction
conditions. The high efficiency and reactivity of the aryl sulfinic acid
salts could be attributed to the formation of active Pd0 species via
the release of SO2 during the catalytic cycle. The mild reaction
conditions combined with the widely available sodium arylsulfinate
enable this transformation to be an attractive alternative to the
Heck-type cross-coupling.
[44] Z. Sun, J. Zhang, P. Zhao, Org. Lett. 2010, 12,992.
[45] X. Zhou, J. Luo, J. Liu, S. Peng, G.-J. Deng, Org. Lett. 2011, 13, 1432.
[46] G.-W. Wang, T. Miao, Chem. Eur. J. 2011, 17, 5787.
[47] T. Miao, G.-W. Wang, Chem. Commun. 2011, 47, 9501.
wileyonlinelibrary.com/journal/aoc
Copyright © 2013 John Wiley & Sons, Ltd.
Appl. Organometal. Chem. 2013, 27, 188–190