because both electronic and steric effects can be addressed
effectively by changing different electron-donating and
-withdrawing groups (R1) on the aromatic ring (electronic
effect) and by changing various substitutions (R2) on the
nitrogen (steric effect), respectively (Figure 2).
Table 1. Palladacycle-Catalyzed Heck Reaction of
Iodobenzene with Methyl Acrylatea
entry
palladacycle
mol % Pd
t (h)
yield (%)b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
13
14
15
16a
16b
16c
16d
17
13
14
15
16a
16b
16c
16d
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.001
0.001
0.001
0.001
0.001
0.001
0.001
2
2
2
2
2
2
2
2
8
8
8
6
6
6
6
97%
97%
97%
97%
97%
97%
97%
97%
97%
97%
97%
97%
97%
97%
97%
Figure 2. Carbothioamide-derived palladacycles.
As a matter of fact, such a furancarbothioamide-based
palladacycle 13 (Figure 3) was synthesized 25 years ago,
a Reaction conditions: 3 mmol of Phl, 4.5 mmol of methyl acrylate, 3.6
mmol of Et3N, 2 mL of DMA. b Isolated yields.
of furancarbothioamide-based palladacycles (13-17, Figure
3) and evaluate them in the Heck and Suzuki reactions. We
herein report the preliminary results of our research.
The preparation of the palladated complexes 13-17 was
accomplished using a similar procedure described in the
literature. Accordingly, these palladacycles were prepared
by addition of furancarbothioamides to a methanol solution
of Li2PdCl4 at room temperature.4 The furancarbothioamides
were made by thiolation with Lawesson’s reagent from their
corresponding furancarbamides,5 which were easily synthe-
sized from the commercially available furans.6 Thus, eight
different palladacycles 13-17 (Figure 3) with a variety of
steric and electronic properties were made.
Palladacycles 13-17 are slightly soluble in hexanes,
chloroform, and dichloromethane and moderately soluble in
polar solvents such as DMF, DMA (dimethyl acetamide),
and DMSO.
The catalytic efficacy of the synthesized palladacycles 13-
17 was tested in the Heck cross-coupling reaction between
phenyl iodide and methyl acrylate at 130 °C. The reactions
Figure 3. Structures of the synthesized furancarbothioamide-
derived palladacycles.
and its structure was fully characterized by X-ray diffraction.3
However, its catalytic activity for C-C bond formation was
not evaluated, which encouraged us to synthesize a number
(1) See for example: (a) Beller, M.; Fischer, H.; Herrmann, W. A.; Ofele,
K.; Brossmer, C. Angew, Chem., Int. Ed. Engl. 1995, 34, 1848. (b)
Herrmann, W. A.; Elison, M.; Fischer, J.; Ko¨cher, C.; Artus, G. R. J. Angew.
Chem., Int. Ed. Engl. 1995, 34, 2371. (c) Albisson, D. A.; Bedford, R. B.;
Lawrence, S. E.; Scully, P. N. Chem. Commun. 1998, 2095. (d) Ohff, M.;
Ohff, A.; Milstein, D. Chem. Commun. 1999, 357. (e) Blackmond, D. G.;
Rosner, T.; Pfaltz, A. Org. Proc. Res. DeV. 1999, 3, 275. (f) Herrmann, W.
A.; Bo¨hn, V. P. W.; Reisinger, C.-P. J. Organomet. Chem. 1999, 576, 23.
(g) Herrmann, W. A.; Bohm, V. P. W. J. Organomet. Chem. 1999, 572,
141. (h) Zhang, C.; Huang, J.; Trudell, M. L.; Nolan, S. P. J. Org. Chem.
1999, 64, 3804. (i) Weissman, H.; Milstein, D. Chem. Commun. 1999, 1901.
(j) Alonso, D. A.; Na´jera, C.; Pacheco, M. C. Org. Lett. 2000, 2, 1823. (k)
McGuinness, D. S.; Cavell, K. J. Organometallics 2000, 19, 741. (l) Bedford,
R. B.; Draper, S. M.; Scully, P. N.; Welch, S. L. New J. Chem. 2000, 745.
(m) Zhang, C.; Trudell, M. L. Tetrahedron Lett. 2000, 41, 595. (n) Dupont,
J.; Gruber, A. S.; Fonseca, G. S.; Monteiro, A. L.; Ebeling, G. Organo-
metallics 2001, 20, 171. (o) Gibson, S.; Foster, D. F.; Eastham, G. R.; Tooze,
R. P.; Cole-Hamilton, D. J. Chem. Commun. 2001, 779. (p) Bedford, R.
B.; Welch, S. L. Chem. Commun. 2001, 129. (q) Viciu, M. S.; Kelly, R.
A., III; Stevens, E. D.; Naud, F.; Studer, M.; Nolan, S. P. Org. Lett. 2003,
5, 1479. (r) Weissman, H.; Milstein, D. Chem. Commun. 1999, 1901. (s)
Alonso, D. A.; Na´jera, C.; Pacheco, M. C. Org. Lett. 2000, 2, 1823. (t)
Gruber, A. S.; Zim, D.; Ebeling, G.; Monteiro, A. L.; Dupont, J. Org. Lett.
2000, 2, 1287.
(2) (a) Chiusoli, G. P.; Venturello, C.; Merzoni, S. Chem. Ind. (London)
1968, 977. (b) Gabriele, B.; Salerno, G.; Costa, M.; Chiusoli, G. P. J.
Organomet. Chem. 1995, 503, 21. (c) Zhang, T.; Allen, M. J. Tetrahedron
Lett. 1999, 40, 5813. (e) Nan, Y.; Miao, H.; Yang, Z. Org. Lett. 2000, 2,
297. (e) Miao, H.; Yang, Z. Org. Lett. 2000, 2, 1765. (f) Hu, Y.; Yang, Z.
Org. Lett. 2001, 3, 1387. (g) Dai, M. J.; Wang, C. H.; Dong, G. B.; Xiang,
J.; Luo, T. P.; Liang, B.; Chen, J. H.; Yang, Z. Eur. J. Org. Chem. 2003,
4346. (h) Dai, M.; Liang, B.; Wang, C.; Chen, J.; Yang, Z. Org. Lett. 2004,
6, 221. (i) Yang, D.; Chen, Y.-C.; Zhu, N.-Y. Org. Lett. 2004, 6, 1577.
(3) (a) Mizuno, H.; Nonoyama, M. Polyhedron 1990, 9, 1287. (b)
Nonoyama, M. Transition Met. Chem. 1990, 15, 366. (c) Grinter, T. J.;
Leaver, D.; O’Neil, R. M. Inorg. Nucl. Chem. Lett. 1980, 16, 145.
(4) (a) Nojima, Y.; Noyo, Y. M. Polyhedron 1996, 15, 3795. (b) Onoue,
H.; Minami, K.; Nakagawa, K. Bull. Chem. Soc. Jpn. 1970, 43, 3480.
(5) Scheibye, S.; Pedersen, B. S.; Lawesson, S.-O. Bull. Soc. Chim. Belg.
1978, 87, 229.
(6) Einhorn, J.; Einhorn, C.; Luche, J.-L. Synth. Commun. 1990, 20, 1105.
3338
Org. Lett., Vol. 6, No. 19, 2004