4
Tetrahedron
d Recovered 61% of starting material.
e Recovered 66% of starting material.
In conclusion, we have demonstrated that the type of amine
changes the reactivity of hydrogenation in the presence of
palladium catalyst and formic acid. In this system, the reaction
rate varied greatly depending on the type of solvent, indicating
that the reaction rate can be adjusted straightforwardly. This
experimental procedure is simple and requires no strict time
control, highlighting its utility as an effective tool in organic
synthesis.
Figure 1. Effect of reaction time on hydrogenation
References and notes
1.
2.
3.
4.
5.
6.
Campbell N. K.; Campbell K. B. Chem. Rev. 1942, 31, 77–175.
Burwell, Jr. L. R. Chem. Rev. 1957, 57, 895–934.
Marvell N. E.; Li T. Synthesis 1973, 457–468.
Brieger G.; Nestrick J. T. Chem. Rev. 1974, 74, 567–580
Wang D.; Astruc D. Chem. Rev. 2015, 115, 6621–6686.
Pritchard J.; Filonenko A. G.; van Putten R.; Hensen M. J. E.;
Pidko A. E. Chem. Soc. Rev. 2015, 44, 3808–3833.
Johnstone W. A. R.; Wilby H. A. Chem. Rev. 1985, 85, 129–170.
Vol’pin E. M.; Kukolev P. V.; Chernyshev O. V.; Kolomnikov S.
I. Tetrahedron Lett. 1971, 12, 4435–4438.
Finally, we investigated the substrate scope with a 24 h
reaction time for various alkynes (Table 3). Depending on the
reactivity of the compound, it is possible to adjust the reaction
rate by changing the conditions such as the amount of Pd
catalyst, the type of solvent, and temperature. 1-Phenyl-1-hexyne
(5) and 1,1-diphenyl-2-propyn-1-ol (6) were successfully
transformed into their corresponding semihydrogenated products
in high yield and selectivity (entries 1, 2). In DMF, 6-dodecyne
(7) afforded the corresponding alkane in quantitative yield (entry
3), whereas it gave semihydrogenated products in high yield and
selectivity in AcOEt (entry 4). Semihydrogenation could be
achieved because the reaction rate was reduced by the effect of
AcOEt. Although the reactions of ester compounds produced
only alkenes in low yield over 24 h, it would be possible to
improve the yield by prolonging the reaction time (entries 5–7).
7.
8.
9.
Shen R.; Chen T.; Zhao Y.; Qiu R.; Zhou Y.; Yin S.; Wang X.;
Goto M.; Han L.-B. J. Am. Chem. Soc. 2011, 133, 17037–17044.
10. Mori S.; Ohkubo T.; Ikawa T.; Kume A.; Maegawa T; Monguchi
Y; Sajiki H. J. Mol. Catal. A: Chem. 2009, 307, 77–87.
11. Sajiki H.; Mori S.; Ohkubo T.; Ikawa T.; Kume A.; Maegawa T.;
Monguchi Y. Chem. Eur. J. 2008, 14, 5109–5111.
12. Yabe Y.; Yamada T.; Nagata S.; Sawama Y.; Monguchi Y.; Sajiki
H. Adv. Synth. Catal. 2012, 354, 1264–1268.
13. Nishio R.; Sugiura M.; Kobayashi S. Org. Biomol. Chem., 2006,
4, 992–995.
14. Tani K.; Ono N.; Okamoto S.; Sato F. J. Chem. Soc., Chem.
Commun. 1993, 386–387.
Table 3 Reaction of various alkynes.
15. Yu J.; Spencer B. J. Chem. Commun. 1998, 1935–1936.
16. Yu J.; Spencer B. J. Chem. Commun., 1998, 1103–1104.
17. Leitner W.; Brown M. J.; Brunner H. J. Am. Chem. Soc., 1993,
115, 152–159.
18. Ram S.; Ehrenkaufer E. R. Synethesis, 1988, 91–94.
19. Nanjo K.; Suzuki K.; Sekiya M. Chem. Lett., 1976, 1169–1172.
20. Fujii A.; Hashiguchi S.; Uematsu N.; Ikariya T.; Noyori R. J. Am.
Chem. Soc. 1996, 118, 2521–2522.
21. Pandey K. S.; Greene E. A.; Poisson J.-F. J. Org. Chem. 2007, 72,
7769–7770.
22. Suzuki H.; Nishioka H.; Takeuchi Y. Tetrahedron Lett. 2012, 53,
3686–3688.
Temp.
(C)
PdCl2
(mol%)
Yield %
Entry
1
Substrate
Solv.
DMF
(cis:trans)a
5
5
30
30
84 (13:1)
90
5
6
2
DMF
3
4
5
5
DMF
30
50
0b
23. Suzuki H.; Yoshioka S.; Igesaka A.; Nishioka H.; Takeuchi Y.
Tetrahedron 2013, 69, 6399–6403.
7
8
AcOEt
90 (21.5:1)
24. (Table 1 entry 3): To a solution of triethanolamine (5 eq.) and
formic acid (5 eq.) in DMF (5 mL) was added diphenylacetylene
(1) (178 mg, 1.00 mmol) and PdCl2 (5 mol%) at r.t. and the
reaction mixture was stirred at the same temperature for 24 h
under argon atmosphere. The mixture was poured into brine (10
mL) and extracted with Et2O (510 mL). The organic layer was
washed with H2O (50 mL), brine (50 mL) and dried with MgSO4.
The solvent was removed under reduced pressure to give crude
reaction mixture. Yield was directly determined by 1H NMR
spectroscopy.
5
10
DMF
30
49 (48:1)c
6
7
5
DMF
50
50
34 (4.7:1)d
30 (100:0)e
9
20
AcOEt
a Determined by 1H NMR analysis of the crude mixture.
b Over-hydrogenated product was obtained in 100% yield.
c Recovered 46% of starting material.