Z. Li et al. / Journal of Molecular Catalysis A: Chemical 328 (2010) 93–98
97
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in
References
[1] For recent reviews for Heck reaction, see: (a) I.P. Beletskaya, A.V. Cheprakov,
Chem. Rev. 100 (2000) 3009–3066;
(b) A.B. Dounay, L.E. Overman, Chem. Rev. 103 (2003) 2945–2963;
(c) M. Shibasaki, E.M. Vogl, T. Ohshima, Adv. Synth. Catal. 346 (2004)
1533–1552;
(d) R.B. Bedford, C.S.J. Cazin, D. Holder, Coord. Chem. Rev. 248 (2004)
2283–2321;
(e) K. Köhler, S.S. Pröckl, W. Kleist, Curr. Org. Chem. 10 (2006) 1585–1601;
(f) V. Polshettiwar, Á. Molnár, Tetrahedron 63 (2007) 6949–6986;
(g)T. Muller, S. Bräse, in: M. Oestreich (Ed.), TheMizoroki–Heck Reaction, Wiley,
Chichester, 2009.
[2] S. Bräse, A. de Meijere, in: A. de Meijere, F. Diederic (Eds.), Metal-Catalyzed
Cross-Coupling Reactions, Wiley-VCH, Weinheim, 2004.
[3] For commercial application: (a) A. Eisenstadt, D.J. Ager, in: R.A. Sheldon, H. Van
Bekkum (Eds.), Fine Chemicals through Heterogeneous Catalysts, Wiley-VCH,
Weinheim, 1998;
Fig. 5. Recycling of the 0.26 wt% Pd/TiO2-ads catalyst in the Heck reaction between
(b) J.G. de Vires, Can. J. Chem. 79 (2001) 1086–1092;
(c) A. Zapf, M. Beller, Top. Catal. 19 (2002) 101–109.
[4] A.F. Littke, G.C. Fu, Angew. Chem. Int. Ed. 41 (2002) 4176–4211.
[5] M.T. Reetz, J.G. De Vries, Chem. Commun. (2004) 1559–1563.
[6] (a) D. Astruc, F. Lu, J.R. Aranzaes, Angew. Chem. Int. Ed. 44 (2005)
7852–7872;
(b) L.X. Yin, J. Liebscher, Chem. Rev. 107 (2007) 133–173.
[7] N.T.S. Phan, M.V.D. Sluys, C.W. Jones, Adv. Synth. Catal. 348 (2006) 609–679.
[8] R.G. Heidenreich, J.G.E. Krauter, J. Pietsch, K. Köhler, J. Mol. Catal. A 182–183
(2002) 499–509.
[9] For reviews on the mechanism of heterogeneous Heck reactions: (a) J.G. de
Vries, Dalton Trans. (2006) 421–429;
(b) K. Köhler, W. Kleist, S.S. Pröckl, Inorg. Chem. 46 (2007) 1876–1883;
(c) D. Astruc, Inorg. Chem. 46 (2007) 1884–1893.
[10] Y. Wan, H.Y. Wang, Q.F. Zhao, M. Klingstedt, O. Terasaki, D.Y. Zhao, J. Am. Chem.
Soc. 131 (2009) 4541–4550.
4-iodoanisole and methyl acrylate.
runs, respectively (Fig. 5). This demonstrates the 0.26 wt% Pd/TiO2-
ads sample obtained by the pH-controlled adsorption method is a
reusable catalyst.
It should be noted that 0.26 wt% Pd/TiO2-imp catalyst prepared
by the conventional wet impregnation method only provided a 27%
isolated yield for the Heck reaction of bromobenzene and methyl
than the Pd/TiO2-ads catalyst due to the conglomeration of parti-
cles. It can be seen Pd nanoparticles aggregated to a large particle in
contrast with the clear dispersion of 0.26 wt% Pd/TiO2-ads catalyst
by TEM (Fig. 4 and S3). In addition, Heck reaction of bromobenzene
and methyl acrylate hardly occurred in the presence of the unsup-
ported fresh PdO or PdCl2 for 24 h under our reaction conditions
even if the amount was increased to 5 mol%. In other words, the
0.26 wt% Pd/TiO2-ads catalyst prepared by the adsorption method
played an important role during the reaction, allowing Heck reac-
tion to easily occur.
[11] (a) M. Julia, M. Duteil, Bull. Soc. Chim. Fr. 9–10 (1973) 2790;
(b) C.M. Andersson, A. Hallberg, G.D. Daves Jr., J. Org. Chem. 52 (1987)
3529–3536;
(c) K. Köhler, R.G. Heidenreich, J.G.E. Krauter, J. Pietsch, Chem. Eur. J. 8 (2002)
622–631;
(d) G.V. Ambulgekar, B.M. Bhanage, S.D. Samant, Tetrahedron Lett. 46 (2005)
2483–2485.
[12] (a) M. Dams, L. Drijkoningen, B. Pauwels, G. Van Tendeloo, D.E. De Vos, P.A.
Jacobs, J. Catal. 209 (2002) 225–236;
(b) C.M. Crudden, M. Sateesh, R. Lewis, J. Am. Chem. Soc. 127 (2005)
10045–10050;
(c) B.W. Glasspoole, J.D. Webb, C.M. Crudden, J. Catal. 265 (2009) 148–154.
[13] M. Wagner, K. Köhler, L. Djakovitch, S. Weinkauf, V. Hagen, M. Muhler, Top.
Catal. 13 (2000) 319–326.
4. Conclusions
[14] S.S. Pröckl, W. Kleist, M.A. Gruber, K. Köhler, Angew. Chem. Int. Ed. 43 (2004)
1881–1882.
[15] M.J. Climent, A. Corma, S. Iborra, M. Mifsud, Adv. Synth. Catal. 349 (2007)
1949–1954.
[16] A. Cwik, Z. Hell, F. Figueras, Adv. Synth. Catal. 348 (2006) 523–530.
[17] L. Djakovitch, K. Köhler, J. Am. Chem. Soc. 123 (2001) 5990–5999.
[18] M. Choi, D.-H. Lee, K. Na, B.-W. Yu, R. Ryoo, Angew. Chem. Int. Ed. 48 (2009)
3673–3676.
[19] Y.H. Zhu, C.P. Ship, A. Emi, Z.S. Su, R.A. Kemp Monalisa, Adv. Synth. Catal. 349
(2007) 1917–1922.
[20] B.M. Choudary, S. Madhi, N.S. Chowdari, M.L. Kantam, B. Sreedhar, J. Am. Chem.
Soc. 124 (2002) 14127–14136.
[21] K. Mori, K. Yamaguchi, T. Hara, T. Mizugaki, K. Ebitani, K. Kaneda, J. Am. Chem.
Soc. 124 (2002) 11572–11573.
[22] (a) Á. Molnár, A. Papp, K. Miklós, P. Forgo, Chem. Commun. (2003)
2626–2627;
The Pd/TiO2-ads catalyst, prepared by a simple pH-controlled
adsorption method, is an efficient and stable catalyst for the C–C
coupling reaction of aryl halides and alkenes. The catalyst activ-
ity is observed to depend on the conditions for its preparation and
the content of Pd absorbed on the surface of TiO2. The 0.26 wt%
Pd/TiO2-ads catalyst exhibits high activity and excellent selectiv-
ity and corresponding products are obtained with yields in the
range 27–96% at 140 ◦C. During the reaction, palladium nanoparti-
cles are in situ generated via reduction. TEM images indicate that
the nanoparticles are nearly monodisperse in size and stabilized
on the surface of TiO2. After the reaction, the leaching of palladium
into the solution is very low by ICP. In addition, the catalyst can
be readily recovered and reused several times without significant
loss of catalytic activity. Further study to clarify the reaction mech-
anism and other applications of this catalyst are underway in our
group.
(b) S. Niembro, A. Shafir, A. Vallribera, R. Alibés, Org. Lett. 10 (2008)
3215–3218.
[23] H.L. Wu, Q.H. Zhang, Y. Wang, Adv. Synth. Catal. 347 (2005) 1356–1360.
[24] F.X. Zhang, J.X. Chen, X. Zhang, W.L. Gao, R.C. Jin, N.J. Guan, Catal. Today 93–95
(2004) 645–650.
[25] Z.B. Wu, Z.Y. Sheng, Y. Liu, H.Q. Wang, N. Tang, J. Wang, J. Hazard. Mater. 164
(2009) 542–548.
[26] K.S. Kim, A.F. Gossmann, N. Winograd, Anal. Chem. 46 (1974) 197.
[27] M.L. Cubeiro, J.L.G. Fierro, Appl. Catal. A 168 (1998) 307–322.
[28] Z. Zhang, G. Mestl, H. Knozinger, W.M.H. Sachtler, Appl. Catal. A 89 (1992)
155–168.
[29] C. Evangelisti, N. Panziera, P. Pertici, G. Vitulli, P. Salvadori, C. Battocchio, G.
Polzonetti, J. Catal. 262 (2009) 287–293.
Acknowledgements
The authors gratefully acknowledge the financial support of
the 973 Program (2006CB932903 and 2009CB939803), “The Dis-
tinguished Oversea Scholar Project”, “One hundred Talent Project”
and NSF of Fujian Province (2009J05040).
[30] There is controversy whether the Pd nanoparticles on the solid surface are the
actual catalyst or just a source that leaches active catalyst species, see: (a) F.