Green Chemistry
Paper
1415, 1358, 1204; δH (DMSO d6, 400 MHz) 7.00 (2H, bs, N–H),
11.1 (2H, bs, OH); δF (DMSO d6, 376 MHz): – 197.05 (s); δC
(DMSO d6, 100 MHz) 125.13 (d, 1JCF 208.6, C–F), 149.26 (d, 4JCF
References
1 (a) K. Muller, C. Faeh and F. Diederich, Science, 2007, 317,
1881–1886; (b) Fluorine in Medicinal Chemistry and Chemical
Biology, ed. I. Ojima, Wiley-Blackwell, Oxford, 2009;
(c) S. Purser, P. R. Moore, S. Swallow and V. Gouverneur,
Chem. Soc. Rev., 2008, 37, 320–330; (d) C. Isanbor and
D. O’Hagan, J. Fluorine Chem., 2006, 127, 303–319;
(e) K. L. Kirk, J. Fluorine Chem., 2006, 127, 1013–1029.
2 (a) E. A. Ilardi, E. Vitaku and J. T. Njardarson, J. Med.
Chem., 2014, 57, 2832–2842; (b) B. R. Smith, C. M. Eastman
and E. J. Njardarson, J. Med. Chem., 2014, 57, 9764–9773;
(c) W. K. Hagmann, J. Med. Chem., 2008, 51, 4359–4369;
gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Reports.
ReportsMenu (Accessed 20 January 2015).
3 (a) B. Baasner, H. Hagemann and J. C. Tatlow, Houben-Weyl
Organofluorine Compounds, Vol. E10a, Thieme, Stuttgart,
2000; (b) R. D. Chambers, Fluorine in Organic Chemistry,
Wiley-Blackwell, Oxford, 2004; (c) K. Uneyama, Organo-
fluorine Chemistry, Blackwell, Oxford, 2006; (d) T. Liang,
C. N. Neumann and T. Ritter, Angew. Chem., Int. Ed., 2013,
52, 8214–8264.
2
2.3, C–H), 155.12 (d, JCF 18.0, C–OH); m/z (ASAP) 146 (100%,
[M + H]+).18a
5-Fluorobarbituric acid
Urea (1.50 g, 25 mmol) was added to the solution of sodium
(1.2 g, 53 mmol) in anhydrous ethanol (50 mL) and the
mixture was heated to reflux. Diethyl 2-fluoromalonate (4.45 g,
25 mmol) was added dropwise over 10 minutes and the
mixture was heated at reflux for 1 h. After cooling to room
temperature, the solution was filtered, the residue was washed
with ethanol (20 mL), dissolved in water (30 mL) and acidified
with HCl to pH 1. The precipitated product was recrystallized
from the liquor to afford 5-fluorobarbituric acid (1.87 g, 51%)
as a tan powder. m.p.: >300 °C; ([M + H]+, 147.0206,
C4H4FN2O3 requires: [M]+, 147.0204); IR (neat,cm−1) 2926,
2828, 1578, 1383, 1241, 1128; δF (D2O + NaOD, 376 MHz): –
1
191.95 (s); δC (D2O + NaOD, 100 MHz) 131.89 (d, JCF 214.4,
4
2
C–F), 157.77 (d, JCF 6.2, C–NH), 164.59 (d, JCF 13.4, CvO);
m/z (ASAP) 147 (25%, [M + H]+).18a
3-Fluoro-1-H-1,5-benzodiazepine-2,4-dione
4 (a) K. Alfonsi, J. Colberg, P. J. Dunn, T. Fevig, S. Jennings,
T. A. Johnson, H. P. Kleine, C. Knight, M. A. Nagy,
D. A. Perry and M. Stefaniak, Green Chem., 2008, 10, 31–36;
o-Phenylenediamine (2.70 g, 25 mmol) was added to the solu-
tion of sodium (1.2 g, 53 mmol) in anhydrous ethanol (50 mL)
and the mixture was heated to reflux. Diethyl 2-fluoromalonate
(4.45 g, 25 mmol) was added dropwise over 10 minutes and
the mixture was heated at reflux for 2 h. After cooling to room
temperature, the solution was filtered, the residue was washed
with ethanol (20 mL), dissolved in water (30 mL) and acidified
with HCl to pH 1. The mixture was cooled in ice, filtered,
washed with water (2 × 10mL) and dried in vacuo to afford
3-fluoro-1-H-1,5-benzodiazepine-2,4-dione (3.23 g, 68%) as a tan
powder. m.p.: >300 °C, ([M + H]+, 195.0567, C9H8FN2O2
requires: [M]+, 195.0570); IR (neat,cm−1) 3084, 2951, 1727,
(b)
R.
K.
Henderson,
C.
Jimenez-Gonalez,
D. J. C. Constable, S. R. Alston, G. G. A. Inglis, G. Fisher,
J. Sherwood, S. P. Binksa and A. D. Curzons, Green Chem.,
2011, 13, 854–862; (c) D. Prat, O. Pardigon,
H.-W. Flemming, S. Letestu, V. Ducandas, P. Isnard,
E. Guntrum, T. Senac, S. Ruisseau, P. Cruciani and
P. Hosek, Org. Process Res. Dev., 2013, 17, 1517–1521;
(d) R. K. Henderson, A. P. Hill, A. M. Redman and
H. F. Sneddon, Green Chem., 2015, 17, 945–949; (e) D. Prat,
J. Hayler and A. Wells, Green Chem., 2014, 16, 4546–4551.
5 (a) D. J. C. Constable, A. D. Curzons and
V. L. Cunningham, Green Chem., 2002, 4, 521–527;
(b) J. Andraos, Org. Process Res. Dev., 2005, 9, 149–163;
(c) J. Augé, Green Chem., 2008, 10, 225–231; (d) C. Jimenez-
Gonzalez, C. S. Ponder, Q. B. Broxterman and J. B. Manley,
Org. Process Res. Dev., 2011, 15, 912–917; (e) Green Chemistry
in the Pharmaceutical Industry, ed. P. J. Dunn, A. S. Wells
and M. T. Williams, Wiley-VCH, Weinheim, 2010.
2
1681, 1500, 1159; δH (DMSO d6, 400 MHz): 5.57 (1H, d, JHF
3
46.4, CHF), 7.15–7.19 (2H, m, Ar–H), 7.22 (2H, dt, JHH 6.6,
4JHH 3.5, Ar–H), 10.81 (2H, bs N–H); δF (DMSO d6, 376 MHz):
2
– 207.99 (d, JHF 46.4 C–F); δC (DMSO d6, 100 MHz) 85.12 (d,
1JCF 184.5, C–F), 122.55, 125.52, 128.41, 163.36 (d, JCF 23.2,
2
2
CvO), 164.59 (d, JCF 13.4, CvO); m/z (ASAP) 195 (100%,
[M + H]+), 135 (23%, [M − COCHF]+).23b
6 (a) H. Suschitzky, Adv. Fluorine Chem., 1965, 4, 1–30;
(b) G. Sandford, Fluoroarenes, in Science of Synthesis.
Houben-Weyl Methods of Molecular Transformations. Vol.
31a: Compounds with Two Carbon-Heteroatom Bonds, ed.
C. A. Ramsden, Thieme, Stuttgart, 2007, pp. 21–78.
7 (a) R. Filler, Adv. Fluorine Chem., 1970, 6, 1–42;
(b) G. Sandford, Trihalides, in Comprehensive Organic
Functional Group Transformations 2, ed. A. R. Katritzky and
C. J. Rees, Elsevier, Amsterdam, 2004, vol. 6, pp. 1–22.
8 G. Sandford, J. Fluorine Chem., 2007, 128, 90–104.
Acknowledgements
The research included in this publication received funding
from the European Community’s Seventh Framework Pro-
gramme (FP7/2007–2013) and EFPIA companies’ in kind con-
tribution for the Innovative Medicine Initiative under Grant
Agreement no. 115360 (Chemical manufacturing methods for
the 21st century pharmaceutical industries, CHEM21). We
thank Dr D. S. Yufit for X-ray crystallographic analyses and
Dr C. R. McElroy for useful discussions regarding the use of
green metrics.
9 (a) S. A. Giller, A. Lazdinsh, A. K. Veinberg, A. Y. Sinker,
I. L. Knunyants, L. S. German and N. B. Kazmina, US
This journal is © The Royal Society of Chemistry 2015
Green Chem.