Journal of the American Chemical Society
COMMUNICATION
2
0
(
Z)-β-methylstyrene by a d niobium complex under H /CO
(9) BDI is N,N -bis(2,6-diisopropylphenyl)-β-diketiminate. See: (a)
Tomson, N. C.; Arnold, J.; Bergman, R. G. J. Am. Chem. Soc. 2008,
1
2
mixtures. The experimental data are supported by DFT calcula-
tions, which suggest a novel mechanism for the hydrogenation
reaction that involves coordination of an alkyne to form a
metallacyclopropene Nb(V) complex followed by σ-bond meta-
30, 11262. (b) Tomson, N. C.; Arnold, J.; Bergman, R. G. Organome-
tallics 2010, 29, 5010.
10) (a) Giernoth, R.; Heinrich, H.; Adams, N. J.; Deeth, R. J.;
Bargon, J.; Brown, J. M. J. Am. Chem. Soc. 2000, 122, 12381. (b)
Giernoth, R.; Huebler, P.; Bargon, J. Angew. Chem., Int. Ed. 1998,
(
thesis with H and subsequent reductive elimination to yield
2
the product (Z)-alkene. An excess of CO is required for catalyst
stability and proposed to function as a means of displacing the
product alkene from a Nb(III) intermediate for achieving catalyst
turnover. We are currently performing further synthetic, mech-
anistic, and kinetic studies in order to support our preliminary
results on the mechanism and intermediates involved in this
reaction.
37, 2473.
(
11) (a) Burckhardt, U.; Tilley, T. D. J. Am. Chem. Soc. 1999,
21, 6328. (b) Sabo-Etienne, S.; Rodriguez, V.; Donnadieu, B.; Chau-
dret, B.; el Makarim, H. A.; Barthelat, J. C.; Ulrich, S.; Limbach, H. H.;
Moise, C. New J. Chem. 2001, 25, 55. (c) La Pierre, H. S.; Arnold, J.;
Bergman, R. G.; Toste, F. D. J. Am. Chem. Soc., submitted. (d) An
1
2
alternative description of these complexes would be that of a d metal
center with both the CO and the alkyne as strong π-accepting ligands.
However, a complex with this latter electronic structure would likely
exhibit both shorter CꢀC bonds and more linear RꢀCꢀC (R = Me, Ph)
’
ASSOCIATED CONTENT
angles for the alkyne as well as a lower ν and the presence of a strong
CO
S
Supporting Information. Experimental procedures, ana-
b
π-bonding interaction between CO and the metal center in the occupied
molecular orbitals of the complex I-2a as calculated by DFT (see the SI).
(12) As determined using the continuous symmetry parameter τ =
(α ꢀ β)/60°, where α and β are the largest and second-largest angles
about the metal center, respectively, See: Addison, A. W.; Rao, T. N.;
Reedijk, J.; van Rijn, J.; Verschoor, G. C. J. Chem. Soc., Dalton Trans.
lytical data, NMR spectra, crystal data, CIF files for 3a and 3b,
and DFT methods and results. This material is available free of
charge via the Internet at http://pubs.acs.org.
’
AUTHOR INFORMATION
1
984, 1349.
Corresponding Author
arnold@berkeley.edu; rbergman@berkeley.edu
(13) Modern Physical Organic Chemistry; Anslyn, E. V., Dougherty,
D. A., Eds.; University Science Books: Mill Valley, CA, 2006; p 22.
14) Tomson, N. C.; Arnold, J.; Bergman, R. G. Organometallics
010, 29, 2926.
15) In addition to this result, DFT calculations showed that
dihydride intermediate I-10 is +27.5 kcal/mol from dicarbonyl complex
and thus +3.8 kcal/mol from the σ-bond metathesis TS (see the SI).
16) Tomson, N. C.; Arnold, J.; Bergman, R. G. Dalton Trans. 2011,
40, 7718 .
(17) All structures were fully optimized with Gaussian 09 using the
(
2
(
’
ACKNOWLEDGMENT
We thank the NSF (CHE-0848931 and CHE-0841786) for
1
financial support; Drs. A. DiPasquale, C. Canlas, and J. Krinsky
for experimental assistance; and Dr. G. Nocton and H. S. La
Pierre for helpful discussions. T.L.G. is grateful to the UCB
Department of Chemistry for the Howard W. Crandall
Fellowship.
(
B3LYP hybrid functional. The LANL2DZ basis set was used for the
metal center, and the 6-31G* basis set with a 5d diffusional was used for
the H, C, N, and O atoms. All optimized geometries were compared
using their zero-point energies. For computational expediency, the aryl
groups of the BDI ligand were replaced with phenyl groups and the tBu
imido ligand was replaced by a methylimido group.
’
REFERENCES
(1) Handbook of Homogeneous Hydrogenation; de Vries, J. G., Elsevier,
C. J., Eds.; Wiley-VCH: Weinheim, Germany, 2007; Vol. 1.
(18) The triplet state was found to be 9.4 kcal/mol higher in energy.
(2) Lindlar, H. Helv. Chim. Acta. 1952, 35, 446.
(3) Organotransition Metal Chemistry: From Bonding to Catalysis;
Hartwig, J. F., Ed.; University Science Books: Mill Valley, CA, 2010.
(
4) (a) Hauwert, P.; Maestri, G.; Sprengers, J. W.; Catellani, M.;
Elsevier, C. J. Angew. Chem., Int. Ed. 2008, 47, 3223. (b) La Pierre, H. S.;
Arnold, J.; Toste, F. D. Angew. Chem., Int. Ed. 2011, 50, 3900. (c)
Hauwert, P.; Boerleider, R.; Warsink, S.; Weigand, J. J.; Elsevier, C. J.
J. Am. Chem. Soc. 2010, 132, 16900. (d) Warsink, S.; Chang, I. H.;
Weigand, J. J.; Hauwert, P.; Chen, J. T.; Elsevier, C. J. Organometallics
2
010, 29, 4555.
(
5) A H /CO mixture was recently used to form NꢀH bonds from
2
N
2
via CO induced-cleavage followed by hydrogenation. See: Knobloch,
D. J.; Lobkovsky, E.; Chirik, P. J. J. Am. Chem. Soc. 2010, 132, 15340.
6) (a) Miller, A. D.; Mcbee, J. L.; Tilley, T. D. J. Am. Chem. Soc.
008, 130, 4992. (b) Smith, D. P.; Strickler, J. R.; Gray, S. D.; Bruck,
(
2
M. A.; Holmes, R. S.; Wigley, D. E. Organometallics 1992, 11, 1275. (c)
Reichard, H. A.; Micalizio, G. C. Angew. Chem., Int. Ed. 2007, 46, 1440.
(
7) However, some group 5 and 6 transition-metal complexes show
2
a tendency to form stable η -alkyne/alkene adducts; their reactivity has
also been studied. See: (a) Biasotto, F.; Etienne, M.; Dahan, F.
Organometallics 1995, 14, 1870. (b) Etienne, M.; Carfagna, C.; Lorente,
P.; Mathieu, R.; de Montauzon, D. Organometallics 1999, 18, 3075. (c)
Hirpo, W.; Curtis, M. D. Organometallics 1994, 13, 2706. (d) Ison, E. A.;
Abboud, K. A.; Boncella, J. M. Organometallics 2006, 25, 1557.
(8) Ortiz, C. G.; Abboud, K. A.; Cameron, T. M.; Boncella, J. M.
Chem. Commun. 2001, 247.
1
4907
dx.doi.org/10.1021/ja206016s |J. Am. Chem. Soc. 2011, 133, 14904–14907