European Journal of Organic Chemistry
10.1002/ejoc.201601352
COMMUNICATION
Table 1. Scope.[a]
Light (CFL)
NiCl2(dtbbpy) (5 mol%)
thioxanthone (10 mol%)
i-Pr2NEt (0.40 mmol)
Ar
X
Ar Ar
t-BuOH (5 mL),
ambient temp., 12 h
1
2
(0.20 mmol)
MeO
OMe
OMe
Me
Me
MeO
OMe
t-Bu
t-Bu
2b
2c
MeO
2d
2e
67%
X = Cl 14%
X = Br 70%
X = I 72%
74%
84%
F3C
CF3
NC
CN
MeO2C
CO2Me
pinB
Bpin
2h
2i
2f
2g
62%
67%
84%[b]
52%
S
Ph
Ph
S
2m
84%
2l
68%
2k
2j
79%
79%
[a] Reaction conditions: aryl halide (0.20 mmol), NiCl2(dtbbpy) (0.010 mmol; 5.0 mol %), thioxanthone (0.020 mmol; 10 mol %), i-Pr2NEt (0.40 mmol; 2.0 equiv), t-
BuOH (5.0 mL), irradiated with a CFL (20W) at ambient temperature for 12 h. Aryl bromides are used otherwise noted. Isolated yields were shown. [b] i-Pr2NPh
was used instead of i-Pr2NEt, 24 h.
[7]
[8]
S. M. Stevenson, M. P. Shores, E. M. Ferreira, Angew. Chem. Int. Ed.
2015, 54, 6506; Angew. Chem. 2015, 127, 6606.
Keywords: Photoredox • nickel • C–C coupling • homogeneous
catalysis
a) J. Zhang, D. Campolo, F. Dumur, P. Xiao, J. P. Fouassier, D.
Gigmes, J. Lalevee, J. Polym. Sci. Part A: Polym. Chem. 2014, 53, 42;
b) X. Pan, N. Malhotra, J. Zhang, K. Matyjaszewski, Macromolecules
2015, 48, 6948.
[1]
Reviews and Perspectives on photoredox catalysis: a) J. Xuan, W.-J.
Xiao, Angew. Chem. Int. Ed. 2012, 51, 6828; Angew. Chem. 2012, 124,
6934; b) M. Reckenthäler, A. G. Griesbeck, Adv. Synth. Catal. 2013,
355, 2727; c) Y. Xi, H. Yi, A. Lei, Org. Biomol. Chem. 2013, 11, 2387;
d) D. P. Hari, B. König, Angew. Chem. Int. Ed. 2013, 52, 4734; Angew.
Chem. 2013, 125, 4832; e) M. N. Hopkinson, B. Sahoo, J.-L. Li, F.
Glorius, Chem. Eur. J. 2014, 20, 3874; f) J. J. Douglas, M. J. Sevrin, C.
R. J. Stephenson, Org. Process Res. Dev. 2016, 20, 1134; g) M. D.
Levin, S. Kim, F. D. Toste, ACS Cent. Sci. 2016, 2, 293; h) H. Huang, K.
Jia, Y. Che, ACS Catal. 2016, 6, 4983; i) K. L. Skubi, T. R. Blum, T. P.
Yoon, Chem. Rev. 2016, 116, 10035; j) N. A. Romero, D. A. Nicewicz,
Chem. Rev. 2016, 116, 10075; k) D. Ravelli, S. Protti, M. Fagnoni,
Chem. Rev. 2016, 116, 9850; l) M. H. Shaw, J. Twilton, D. W. C.
MacMillan, J. Org. Chem. 2016, 81, 6898.
[9]
Recent examples: a) J. Luo, J. Zhang, ACS Catal. 2016, 6, 873; b) X.
Pan, C. Fang, M. Fantin, N. Malhotra, W. Y. So, L. A. Peteanu, A. A.
Isse, A. Gennaro, P. Liu, K. Matyjaszewski, J. Am. Chem. Soc. 2016,
138, 2411; c) V. Quint, F. Morlet-Savary, J.-F. Lohier, J. Lavelee, A.-C.
Gaumont, S. Lakhdar, J. Am. Chem. Soc. 2016, 138, 7436; d) J. Davies,
T. D. Svejstrup, D. F. Reina, N. S. Sheikh, D. Leonori, J. Am. Chem.
Soc. 2016, 138, 8092; e) D. Kalaitzakis, M. Triantafyllakis, M. Sofiadis,
D. Noutsias, G. Vassilikogiannakis, Angew. Chem. Int. Ed. 2016, 55,
4605; Angew. Chem. 2016, 128, 4681; f) I. Ghoshi, B. König, Angew.
Chem. Int. Ed. 2016, 55, 7676; Angew. Chem. 2016, 128, 7806; g) L.
Wang, W. Huang, R. Li, D. Gehrig, P. W. M. Blom, K. Landfester, K. A.
I. Zhang, Angew. Chem. Int. Ed. 2016, 55, 9783; Angew. Chem. 2016,
128, 9935; h) C. Lévêque, L. Chenneberg, V. Corcé, C. Ollivier, L.
Fensterbank, Chem. Commun. 2016, 52, 9877; i) R. M. Pearson, C.-H.
Lim, B. G. McCarthy, C. B. Musgrave, G. M. Miyake, J. Am. Chem. Soc.
2016, 138, 11399.; j) S. Okamoto, K. Kojiyama, H. Tsujioka, A. Sudo,
Chem. Commun. 2016, 52, 11339. See also ref 1j.
[2]
[3]
D. A. Nicewicz, D. W. C. MacMillan, Science 2008, 322, 77.
M. A. Ischay, M. E. Anzovino, J. Du, T. P. Yoon, J. Am. Chem. Soc.
2008, 130, 12886.
[4]
[5]
T. Koike, M. Akita, Chem. Lett. 2009, 38, 166.
J. M. R. Narayanam, J. W. Tucker, C. R. J. Stephenson, J. Am. Chem.
Soc. 2009, 131, 8756.
[10] N. J. Turro, V. Ramamurthy, J. C. Scaiano, in Modern Molecular
Photochemistry of Organic Molecules, University Science Books,
California, 2010, pp. 629-704.
[6]
a) S. Paria, O. Reiser, ChemCatChem 2014, 6, 2477; b) Q. M. Kainz, C.
D. Matier, A. Bartoszewicz, S. L. Zultanski, J. C. Peters, G. C. Fu,
Science 2016, 351, 681.
This article is protected by copyright. All rights reserved