10.1002/anie.201808642
Angewandte Chemie International Edition
COMMUNICATION
g) J. Xie, H. Jin, A. S. K. Hashmi, Chem. Soc. Rev. 2017, 46, 5193.
Selected examples: a) H. Kim, C. Lee, Angew. Chem. Int. Ed. 2012, 51, 12303;
Angew. Chem. 2012, 124, 12469; b) J. D. Nguyen, E. M. D'Amato, J. M. R.
Narayanam, C. R. J. Stephenson, Nat Chem 2012, 4, 854; c) G. Revol, T.
McCallum, M. Morin, F. Gagosz, L. Barriault, Angew. Chem. Int. Ed. 2013, 52,
13342; Angew. Chem. 2013, 125, 13584; d) H. Huo, X. Shen, C. Wang, L. Zhang,
P. Röse, L.-A. Chen, K. Harms, M. Marsch, G. Hilt, E. Meggers, Nature 2014, 515,
100; e) J. Xie, S. Shi, T. Zhang, N. Mehrkens, M. Rudolph, A. S. K. Hashmi,
Angew. Chem. Int. Ed. 2015, 54, 6046; Angew. Chem. 2015, 127, 6144; f) M.
Knorn, T. Rawner, R. Czerwieniec, O. Reiser, ACS Catalysis 2015, 5, 5186; g) W.
J. Choi, S. Choi, K. Ohkubo, S. Fukuzumi, E. J. Cho, Y. You, Chem. Sci. 2015, 6,
1454; h) P.-K. Chow, G. Cheng, G. S. M. Tong, W.-P. To, W.-L. Kwong, K.-H.
Low, C.-C. Kwok, C. Ma, C.-M. Che, Angew. Chem. Int. Ed. 2015, 54, 2084;
Angew. Chem. 2015, 127, 2112; i) J.-J. Zhong, C. Yang, X.-Y. Chang, C. Zou, W.
Lu, C.-M. Che, Chem. Commun. 2017, 53, 8948; j) R. Naumann, F. Lehmann, M.
Goez, Angew. Chem. Int. Ed. 2018, 57, 1078; Angew. Chem. 2018, 130, 1090.
Selected examples: a) F. R. Petronijević, M. Nappi, D. W. C. MacMillan, J. Am.
Chem. Soc. 2013, 135, 18323; b) F. J. R. Klauck, M. J. James, F. Glorius, Angew.
Chem. Int. Ed. 2017, 56, 12336; Angew. Chem. 2017, 129, 12505; c) C. Wang, J.
Qin, X. Shen, R. Riedel, K. Harms, E. Meggers, Angew. Chem. Int. Ed. 2016, 55,
685; Angew. Chem. 2016, 128, 695; d) E. Fava, A. Millet, M. Nakajima, S.
Loescher, M. Rueping, Angew. Chem. Int. Ed. 2016, 55, 6776; Angew. Chem.
2016, 128, 6888; e) M. Nakajima, E. Fava, S. Loescher, Z. Jiang, M. Rueping,
Angew. Chem. Int. Ed. 2015, 54, 8828; Angew. Chem. 2015, 127, 8952; f) L. Qi, Y.
Chen, Angew. Chem. Int.Ed. 2016, 55, 13312; Angew. Chem. 2016, 128, 13506.
a) I. Ghosh, T. Ghosh, J. I. Bardagi, B. König, Science 2014, 346, 725; b) E. H.
Discekici, N. J. Treat, S. O. Poelma, K. M. Mattson, Z. M. Hudson, Y. Luo, C. J.
Hawker, J. R. de Alaniz, Chem. Commun. 2015, 51, 11705; c) M. Majek, U.
Faltermeier, B. Dick, R. Pérez-Ruiz, A. JacobiꢀvonꢀWangelin, Chem. Eur. J. 2015,
21, 15496; d) I. Ghosh, R. S. Shaikh, B. König, Angew. Chem. Int. Ed. 2017, 56,
8544; Angew. Chem. 2017, 129, 8664; e) M. Neumeier, D. Sampedro, M. Májek,
V. A. delaPeñaO'Shea, A. JacobivonWangelin, R. Pérez-Ruiz, Chem. Eur. J.
2018, 24, 105; f) B. G. McCarthy, R. M. Pearson, C.-H. Lim, S. M. Sartor, N. H.
Damrauer, G. M. Miyake, J. Am. Chem. Soc. 2018, 140, 5088.
potential rather than the bond dissociation energy of the R-X substrates
(Table 2 and Figure S13). For example, kq of 4-chlorobenzonitrile (1.88 ×
108 M-1 s-1) is much faster than that for a variety of alky and aryl bromides.
Thus, the quenching is mainly attributed to outer-sphere electron-transfer
from 2* to R-X. Based upon the emission quenching experiments with R-
Br and DIPEA, a plausible reaction mechanism involving both oxidative
andreductiveprocessesis proposed(SchemeS5).
[2]
Table 4: Light-driven reductive hydrodebromination of aryl bromides.[a,b]
[3]
[4]
[5]
[a] Reaction conditions: substrate (0.1 mmol), 2 (1.5‒5 mol%), DIPEA (0.5 mmol),
formic acid (40 µL), and UVA LED (365 nm, 4.5 W). [b] Product yield determined by
1H NMR spectroscopy using an internal standard. [c] 5 mol% 2 used.
In summary, strongly electron-donating carbazolyl groups have been
incorporated into blue phosphorescent Pt(II) complexes supported by
tetradentate bis(phenolate-NHC) ligands todevelop air stablestrong photo-
reductants. The Pt(II) complex displays strong excited state reducing ability
with E([Pt]+/*) over -2.6 V vs Cp2Fe+/0. The one-electron reduced species is
stronger reductant with Epc([Pt]-/0) at -3.1 V vs Cp2Fe+/0. Together with long
excited state lifetime, the complex is able to drive light-induced reductive
coupling of aromatic carbonyl compounds and reductive debromination of
unactivated aryl bromides in good to excellent yields under mild conditions.
This work highlights that Pt(II) complexes supported bytetradentateligands
arepromisingrobustphoto-catalystsfororganicsynthesis.
a) M. Marchini, G. Bergamini, P. G. Cozzi, P. Ceroni, V. Balzani, Angew. Chem. Int.
Ed. 2017, 56, 12820;Angew. Chem. 2017, 129, 12996; b) I. Ghosh, J. I. Bardagi, B.
König, Angew. Chem. Int.Ed. 2017, 56, 12822; Angew. Chem. 2017, 129, 12998.
S. B. Harkins, J. C. Peters, J. Am. Chem. Soc. 2005, 127, 2030.
[6]
[7]
a) W. Sattler, M. E. Ener, J. D. Blakemore, A. A. Rachford, P. J. LaBeaume, J.
W. Thackeray, J. F. Cameron, J. R. Winkler, H. B. Gray, J. Am. Chem. Soc.
2013, 135, 10614; b) W. Sattler, L. M. Henling, J. R. Winkler, H. B. Gray, J. Am.
Chem. Soc. 2015, 137, 1198.
[8]
L. A. Büldt, X. Guo, A. Prescimone, O. S. Wenger, Angew. Chem. Int. Ed. 2016,
55, 11247; Angew. Chem. 2016, 128, 11413.
[9]
L. A. Büldt, X. Guo, R. Vogel, A. Prescimone, O. S. Wenger, J. Am.
Chem. Soc. 2017, 139, 985.
Acknowledgements
[10]
a) K. Li, X. Guan, C.-W. Ma, W. Lu, Y. Chen, C.-M. Che, Chem. Commun. 2011,
47, 9075; b) K. Li, G. Cheng, C. Ma, X. Guan, W.-M. Kwok, Y. Chen, W. Lu, C.-M.
Che, Chem. Sci. 2013, 4, 2630; c) A. Meyer, Y. Unger, A. Poethig, T. Strassner,
Organometallics 2011, 30, 2980; d) K. Li, G. S. Ming Tong, Q. Wan, G. Cheng,
W.-Y. Tong,W.-H. Ang,W.-L. Kwong, C.-M. Che, Chem. Sci. 2016, 7, 1653.
CCDC 1417213 and 1845252 contain the supplementary crystallographic data
for this paper. These data can be obtained free of charge from The Cambridge
Crystallographic Data Centre.
This work was supported by the National Key Basic Research Program
of China(No. 2013CB834802), the Hong Kong Research Grants Council
(HKU17330416), the University Grants Committee Areas of Excellence
Scheme (AoE/P-03/08), CAS-Croucher Foundation Funding Scheme for
Joint Laboratories, and the Science and Technology Innovation
Commission of ShenzhenMunicipality(JCYJ20160530184056496).
[11]
[12]
a) T. Hokamp, A. Dewanji, M. Lübbesmeyer, C. Mück-Lichtenfeld, E.-U.
Würthwein, A. Studer, Angew. Chem. Int. Ed. 2017, 56, 13275; Angew. Chem.
2017, 129, 13459; b) M. C. Haibach, B. M. Stoltz, R. H. Grubbs, Angew. Chem.
Int. Ed. 2017, 56, 15123; Angew. Chem. 2017, 129, 15319.
Keywords: photo-redox catalysis • photo-reductant • Pt(II)
complex• radical dehalogenation • C-C bond formation
[13]
[14]
Y. Unger, D. Meyer, O. Molt, C. Schildknecht, I. Münster, G.
Wagenblast, T. Strassner, Angew. Chem. Int. Ed. 2010, 49, 10214;
Angew. Chem. 2010, 122, 10412.
[1]
Selected reviews: a) J. M. R. Narayanam, C. R. J. Stephenson, Chem. Soc.
Rev. 2011, 40, 102; b) C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev.
2013, 113, 5322; c) D. M. Schultz, T. P. Yoon, Science 2014, 343, 1239176; d)
D. Ravelli, S. Protti, M. Fagnoni, Chem. Rev. 2016, 116, 9850; e) I. Ghosh, L.
Marzo, A. Das, R. Shaikh, B. König, Acc. Chem. Res. 2016, 49, 1566;
f) M. Majek, A. Jacobi von Wangelin, Acc. Chem. Res. 2016, 49, 2316;
C. Walling, A. Cioffari, J. Am. Chem. Soc. 1972, 94, 6059.
This article is protected by copyright. All rights reserved.