ligands (e.g., NHC) are less expensive than phosphines. On the
other hand, Yao et al. reported in 200317 that Pd(OAc)2, albeit
being very simple, could also efficiently catalyze the Heck
reaction where the acetate anion was proposed to function as
ligand. This interesting finding was consistent with the theory
of Amatore and Jutand18 who claimed that coordination by
anionic carboxylates could enhance the activity of Pd toward
oxidative addition.
Prompted by Yao’s pioneering discovery, we hypothesized
that it was possible to design phosphine-free Pd catalysts more
efficient, yet still low-priced, than Pd(OAc)2 by strategically
incorporating an additional coordinating site into the acetate
anion (Scheme 1). This hypothesis was partly validated by our
Pd(quinoline-8-carboxylate)2 as a Low-Priced,
Phosphine-Free Catalyst for Heck and Suzuki
Reactions
Xin Cui,†,‡ Juan Li,†,‡ Zhi-Ping Zhang,‡ Yao Fu,‡
Lei Liu,*,†,‡ and Qing-Xiang Guo*,‡
Department of Chemistry, Key Laboratory of Bioorganic
Phosphorus Chemistry and Chemical Biology, Tsinghua
UniVersity, Beijing 100084, China, Department of Chemistry,
UniVersity of Science and Technology of China,
Hefei 230026, China
lliu@mail.tsinghua.edu.cn; qxguo@ustc.edu.cn
SCHEME 1. Improved Design of Phosphine-Free Ligands
for Pd Catalysis by Incorporating an Additional
Coordinating Atom
ReceiVed August 15, 2007
N,O-Bidentate compounds were systematically evaluated as
phosphine-free ligands for Pd-catalyzed C-C bond-formation
reactions through kinetic measurements. Pd(quinoline-8-
carboxylate)2 was identified as one of the most efficient, yet
still low-priced, phosphine-free catalysts for Heck as well
as Suzuki reactions of unactivated aryl bromides with high
turnover numbers up to ca. 10,000.
recent study on the use of amino acids as ligands for Pd-
catalyzed Heck reactions19 and an earlier related study by Reetz
(5) (a) Tao, B.; Boykin, D. W. J. Org. Chem. 2004, 69, 4330. (b) Li,
J.-H.; Liu, W.-J. Org. Lett. 2004, 6, 2809. (c) Li, J.-H.; Liu, W.-J.; Xie,
Y.-X. J. Org. Chem. 2005, 70, 5409. (d) Li, J.-H.; Liang, Y.; Wang, D.-P.;
Liu, W.-J.; Xie, Y.-X.; Yin, D.-L. J. Org. Chem. 2005, 70, 2832. (e) Xie,
Y.-X.; Li, J.-H.; Yin, D.-L. Chin. J. Org. Chem. 2006, 26, 1155.
(6) (a) Grasa, G. A.; Hillier, A. C.; Nolan, S. P. Org. Lett. 2001, 3, 1077.
(b) Wu, K.-M.; Huang, C.-A.; Peng, K.-F.; Chen, C.-T. Tetrahedron 2005,
61, 9679.
(7) (a) Buchmeiser, M. R.; Wurst, K. J. Am. Chem. Soc. 1999, 121,
11101. (b) Kawano, T.; Shinomaru, T.; Ueda, I. Org. Lett. 2002, 4, 2545.
(c) Najera, C.; Gil-Moito, J.; Karlstrum, S.; Falvello, L. R. Org. Lett. 2003,
5, 1451.
(8) (a) Mino, T.; Shirae, Y.; Sakamoto, M.; Fujita, T. Synlett 2003, 882.
(b) Mino, T.; Shirae, Y.; Sakamoto, M.; Fujita, T. J. Org. Chem. 2005, 70,
2191. (c) Mino, T.; Shirae, Y.; Sasai, Y.; Sakamoto, M.; Fujita, T. J. Org.
Chem. 2006, 71, 6834.
(9) Li, S. H.; Xie, H. B.; Zhang, S. B.; Lin, Y. J.; Xu, J. N.; Cao, J. G.
Synlett 2005, 1885.
Pd-catalyzed C-C bond-formation reactions such as the Heck
and Suzuki cross couplings are playing important roles in
modern organic synthesis.1 These cross-coupling reactions are
usually performed with 1-5 mol % of Pd catalyst along with
phosphine ligands, which sometimes creates practical problems
because organophosphines tend to be expensive, poisonous, and
air sensitive.2 Accordingly, an interesting current challenge is
to develop Pd catalysts that can utilize inexpensive phosphine-
free ligands. In this regard a number of ligands including
N-heterocyclic carbenes (NHC),3 oxazolines,4 amines,5 Schiff
bases,6 pyridines,7 hydrazones,8 guanidines,9 pyrazoles,10 tet-
razoles,11 quinolines,12 carbazones,13 imidazoles,14 thioureas,15
and 1,3-dicarbonyl compounds16 have been examined for Pd
catalysis recently. Note that not all of these phosphine-free
(10) Mukherjee, A.; Sarkar, A. Tetrahedron Lett. 2005, 46, 15.
(11) Gupta, A. K.; Song, C. H.; Oh, C. H. Tetrahedron Lett. 2004, 45,
4113.
(12) Iyer, S.; Kulkarni, G. M.; Ramesh, C. Tetrahedron 2004, 60, 2163.
(13) Kovala-Demertzi, D.; Yadav, P. N.; Demertzis, M. A.; Jasiski, J.
P.; Andreadaki, F. J.; Kostas, I. D. Tetrahedron Lett. 2004, 45, 2923.
(14) (a) Park, S. B.; Alper, H. Org. Lett. 2003, 5, 3209. (b) Xiao, J. C.;
Twamley, B.; Shreeve, J. M. Org. Lett. 2004, 6, 3845.
(15) (a) Dai, M. J.; Liang, B.; Wang, C. H.; You, Z. J.; Xiang, J.; Dong,
G. B.; Chen, J. H.; Yang, Z. AdV. Synth. Catal. 2004, 346, 1669. (b) Yang,
D.; Chen, Y. C.; Zhu, N. Y. Org. Lett. 2004, 6, 1577. (c) Chen, W.; Li, R.;
Han, B.; Li, B. J.; Chen, Y. C.; Wu, Y.; Ding L. S.; Yang, D. Eur. J. Org.
Chem. 2006, 1177.
† Tsinghua University.
‡ University of Science and Technology of China.
(1) Cacchi, S.; Fabrizi, G. Chem. ReV. 2005, 105, 2873.
(2) (a) Farina, V. AdV. Synth. Catal. 2004, 346, 1553. (b) Phan, N. T.
S.; Van Der Sluys, M.; Jones, C. W. AdV. Synth. Catal. 2006, 348, 609.
(3) (a) Gstottmayr, C. W. K.; Bohm, V. P. W.; Herdtweck, E.; Grosche,
M.; Herrmann, W. Angew. Chem., Int. Ed. 2002, 41, 1363. (b) Navarro,
O.; Kelly, R. A., III; Nolan, S. P. J. Am. Chem. Soc. 2003, 125, 16194.
(4) (a) Tao, B.; Boykin, D. W. Tetrahedron Lett. 2002, 43, 4955. (b)
Gossage, P. A.; Jenkins, H. A.; Yadav, P. N. Tetrahedron Lett. 2004, 45,
7689. (c) Lee, S. J. Organometal. Chem. 2006, 691, 1347.
(16) Cui, X.; Li, J.; Liu, L.; Guo, Q. X. Chin. Chem. Lett. 2007, 18,
625.
10.1021/jo701783k CCC: $37.00 © 2007 American Chemical Society
Published on Web 10/31/2007
9342
J. Org. Chem. 2007, 72, 9342-9345