S. Guizani et al.
Table 1. Tissue distribution data of 99mTc-3 in normal Swiss mice*
Tissues
2 min
5 min
30 min
60 min
Blood
Brain
Heart
Lungs
3.52 0.62
0.14 0.02
0.77 0.06
2.45 0.81
13.69 2.15
1.64 0.52
1.18 0.19
9.25 1.83
7.25 1.45
0.42 0.07
0.45 0.03
2.21 0.23
0.07 0.01
0.58 0.05
2.19 0.75
12.18 1.91
1.36 0.42
0.44 0.21
6.69 1.25
7.65 0.89
0.34 0.03
0.42 0.04
1.11 0.07
0.04 0.01
0.23 0.04
1.84 0.09
9.89 0.83
0.53 0.19
0.15 0.05
4.86 0.87
3.68 1.26
0.25 0.02
0.38 0.03
0.39 0.04
0.02 0.01
0.14 0.01
0.93 0.03
5.24 1.22
0.36 0.08
0.03 0.01
2.32 0.87
3.23 0.75
0.11 0.01
0.35 0.02
Liver
Spleen
Pancreas
Kidneys
Intestines
Muscle
Stomach
*Values are %ID.gÀ1 standard deviation (n = 3)
and 5.24% ID gÀ1 at 60 min). Nevertheless, although there is a
significant liver uptake at earlier post-injection times, the liver
excretion rate is relatively fast. Our compound was mainly
excreted through the hepatobiliary pathway, as evidenced by
Conflict of Interest
The authors did not report any conflict of interest.
the decreasing activity in liver and intestine. In a lesser extent, References
a
partial excretion through the renal system could be
[1] J. D. G. Correia, A. Paulo, P. D. Raposinho, I. Santos, Dalton Trans.
2011, 40, 6144.
considered. moderate residual radioactivity and fast
A
clearance associated with the kidneys supports this hypothesis.
At least, a very low accumulation of radioactivity in brain was
observed at all times studied, indicating that 99mTc-3 is not
suitable as brain imaging agent despite interesting chemical/
biological properties. Conversely, because of its promising
in vivo behavior (high stability, fast blood clearance, and non-
specific binding), the new organometallic scaffold represent
an interesting base for the development of targeted diagnostic
radiopharmaceuticals.
[2] S. Liu, S. Chakraborty, Dalton Trans. 2011, 40, 6059.
[3] (a) S. Liu, D. S. Edwards, Chem. Rev. 1999, 99, 2235; (b) S. Liu, Chem.
Soc. Rev. 2004, 33, 445; (c) G. Ribeiro Morais, A. Paulo, I. Santos,
Organometallics 2012, 31, 5693.
[4] (a) J. R. Dilworth, S. J. Parrot, Chem. Soc. Rev., 1998, 27, 43; (b) S.
Jurisson, J. D. Lydon, Chem. Rev. 1999, 99, 2205.
[5] (a) R. Alberto, R. Schibli, A. Egli, P. A. Schubiger, J. Am. Chem. Soc.
1998, 120, 7987; (b) R. Alberto, K. Ortner, N. Wheatley, R. Schibli, P.
A. Schubiger, J. Am. Chem. Soc. 2001, 123, 3135.
[6] T. L. Mindt, H. Struthers, L. Brans, T. Anguelov, C. Schweinsberg, V.
Maes, D. Tourwé, R. Schibli, J. Am. Chem. Soc. 2006, 128, 15096.
[7] (a) H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem. Int. Ed. 2001,
40, 2004; (b) V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless,
Angew. Chem. Int. Ed. 2002, 41, 2596.
Conclusion
In summary, a 99mTc(I)-specific semi-rigid tridentate ligand based
on a click chemistry approach was described for the first time.
The semi-rigid BCA, whose the metal chelating cavity includes
the 1,2,3-triazole moiety with the 2-aminophenol backbone,
was formed in three steps with an overall yield of 32%. The
corresponding neutral 99mTc (CO)3 complex, obtained in
excellent yield, exhibits a lipophilic character and presents
interesting in vitro and in vivo behaviors. In this context, these
promising chemical and biological features—a facile access to
the click ligand, which can be grafted to biomolecules through
the carboxylate arm, the high stability of the Tc(CO)3-complex,
which exhibits rapid clearance and no long-term retention in
organs—make this N2O tridentate ligand a promising BCA for
the development of targeted radioimaging probes. Bioconju-
gation purposes with the o-methoxyphenylpiperazine pharma-
cophore for specific 5-HT1A brain receptor targeting20 are in
progress and will be reported in another paper.
[8] (a) T. L. Mindt, C. Müller, M. Melis, M. de Jong, R. Schibli, Bioconjugate
Chem. 2008, 19, 1689; (b) H. Struthers, B. Spingler, T. L. Mindt, R.
Schibli, Chem. Eur. J. 2008, 14, 6173; (c) H. Struthers, T. L. Mindt, R.
Schibli, Dalton Trans. 2010, 39, 675; (d) C. A. Kluba, T. L. Mindt,
Molecules 2013, 18, 3206.
[9] (a) C. Camp, S. Dorbes, C. Picard, E. Benoist, Tetrahedron Lett. 2008,
49, 1979; (b) A. Seridi, M. Wolff, A. Boulay, N. Saffon, Y. Coulais, C.
Picard, B. Machura, E. Benoist, Inorg. Chem. Commun. 2011, 14, 238.
[10] R. Alberto, R. Schibli, R. Waibel, U. Abram, A. P. Schubiger, Coord.
Chem. Rev. 1999, 190–192, 901.
[11] (a) J. Le Gal, E. Benoist, M. Gressier, Y. Coulais, M. Dartiguenave,
Tetrahedron Lett. 2002, 43, 9295; (b) J. Le Gal, L. Latapie, M. Gressier,
Y. Coulais, M. Dartiguenave; E. Benoist, Org. Biomol. Chem., 2004, 2,
876; (c) J. Le Gal, F. Tisato, G. Bandoli, M. Gressier, J. Jaud, S. Michaud,
M. Dartiguenave, E. Benoist, Dalton Trans. 2005, 3800.
[12] O. Martinage, L. Le Clainche, B. Czarny, C. Dugave, Org. Biomol. Chem.
2012, 10, 6484.
[13] M. Sechi, M. Derudas, R. Dallocchio, A. Dessì, A. Bacchi, L. Sannia, F.
Carta, M. Palomba, O. Ragab, C. Chan, R. Shoemaker, S. Sei, R. Dayam,
N. Neamati, J. Med. Chem. 2004, 47, 5298.
[14] A. Manzo, A. Perboni, G. Broggini, M. Rigamonti, Synthesis 2011, 1, 127.
[15] I. Essouissi, W. Ghali, S. N. Malek, M. Saidi, Nucl. Med. Biol. 2010, 37, 821.
[16] A. Boulay, A. Seridi, C. Zedde, S. Ladeira, C. Picard, L. Maron, E.
Benoist, Eur. J. Inorg. Chem. 2010, 5058.
Acknowledgements
[17] X. Zhang, P. Zhou, J. Liu, Y. Huang, Y. Lin, Y. Chen, T. Gu, W. Yang, X.
Wang, Appl. Radiat. Isot. 2007, 65, 287.
[18] C. Fernandes, J. D. G. Correia, L. Gano, I. Santos, S. Seifert, R. Syhre, R.
Bergmann, H. Spies, Bioconjugate Chem. 2005, 16, 660.
[19] R. Visentin, M. C. Giron, M. Bello, U. Mazzi, Nucl. Med. Biol. 2004, 31, 655.
[20] L. Zimmer, D. Le Bars, J. Label. Compd. Radiopharm. 2013, 56, 105.
The authors thank Mallinckrodt Medical B.V., the Netherlands, for
Isolink kit gifts. The authors are also grateful for French
Alternative Energies and Atomic Energy Commission (CEA) for
the financial support to undertaking a fellowship program with
the SPCMIB CNRS Unit (Toulouse).
J. Label Compd. Radiopharm 2014, 57 158–163
Copyright © 2014 John Wiley & Sons, Ltd.