M. Hong, G. Xiao / Journal of Fluorine Chemistry 146 (2013) 11–14
13
Table 3
1H), 9.22 (brs, 1H), 8.46 (d, J = 11.2, 1H), 6.50–7.38 (m, 4H);
13C NMR (125 MHz, CDCl3)
115.1, 120.1, 153.4, 158.7, 162.5.
(6) N-Benzylformamide: m.p. 60–62 8C, literature [28] 60–62 8C;
1H NMR (500 MHz, DMSO-d6)
8.29 (s, 1H), 7.24–7.47 (m,
5H), 5.75 (s, 1H), 4.51 (d, J = 6.0 Hz, 2H); 13C NMR (125 MHz,
CDCl3) 41.5, 126.8, 129.1, 130.6, 134.1, 162.3.
(7) N-(4-Nitrophenyl)formamide: m.p. 193–195 8C, literature
[28] 194–195 8C; 1H NMR (500 MHz, DMSO-d6)
10.80 (s,
N-Formylation of amines using FSG-Hf(NPf2)4.a
d
Entry
R
R0
Time (h)
Yield (%)b
d
1
2
Ph
H
H
H
H
H
H
H
H
H
Ph
H
1
86
88
84
87
85
80
80
82
81
65
60
4-CH3C6H4
2-CH3C6H4
4-OCH3C6H4
4-OH C6H4
Ph-CH2
1.5
1.5
1.5
1.5
2
3
d
4
5
d
6
1H), 8.39 (s, 1H), 8.20 (d, J = 8.0 Hz, 2H), 7.81 (d, J = 8.0 Hz,
7
4-NO2C6H4
4-ClC6H4
4-BrC6H4
Ph
3
2H); 13C NMR (125 MHz, CDCl3)
143.2, 144.4, 160.0.
d 116.8, 119.4, 124.9, 125.6,
8
3
9
3
10
11
4
(8) N-(4-Chlorophenyl)formamide: m.p. 99–101 8C, literature
CH3(CH2)3
2
[39] 99–101 8C; 1H NMR (500 MHz, CDCl3)
d 8.67 (d, 1H),
a
8.38 (s, 1H), 7.02–7.52 (m, 4H); 13C NMR (125 MHz, CDCl3)
120.5, 121.7, 129.5, 130.3, 159.7, 163.1.
d
Reaction conditions: amines 1 mmol, formic acid 3 mmol, FSG-Hf(NPf2)4
1 mol%, 70 8C.
b
Isolated yield.
(9) N-(4-Bromophenyl) formamide: m.p. 115–119 8C, literature
[37] 116–117 8C; 1H NMR (500 MHz, CDCl3)
9.21 (brs, 1H),
d
3.3. General procedure for N-formylation of amines
8.46 (d, J = 11.32, 1H), 7.39–7.45 (m, 2H), 6.93–6.99 (m, 2H);
13C NMR (125 MHz, CDCl3)
121.1, 132.7, 158.4, 163.3.
d 115.4, 115.8, 116.3, 116.6, 120.9,
To a mixture of HCO2H (3 mmol) and FSG-Hf(NPf2)4 (1 mol%)
was added an amine (1 mmol), and then the reaction mixture was
heated in an oil bath at 70 8C and stirred with a magnetic stirrer.
The progress of the reaction was monitored by TLC. After the
reaction was complete, ethyl acetate was added to the reaction
mixture, and FSG-Hf(NPf2)4 was removed by filtration. The filtrate
was extracted with ethyl acetate. The combined organic layer was
then washed with saturated solution of NaHCO3, brine and dried
over anhydrous Na2SO4. After remove of the solvent, the crude
product was obtained. This was further purified by recrystalliza-
tion with diethyl ether to obtain the pure product. The structure of
the products was confirmed by 1H NMR and 13C NMR.
(10) N,N-Diphenylformamide: m.p. 67–71 8C, literature [28] 67–
71 8C; 1H NMR (500 MHz, CDCl3)
8.68 (s, 1H), 7.39–7.43 (m,
4H), 7.27–7.34 (m, 4H), 7.18 (d, J = 7.4 Hz, 2H); 13C NMR
(125 MHz, CDCl3) 125.4–130.2, 140.0, 162.3.
(11) N-Butylformamide: 1H NMR (500 MHz, CDCl3)
d
d
d
8.56 (s, 1H),
5.79 (brs, 1H), 3.21–3.34 (m, 2H), 1.25–1.60 (m, 4H), 0.95 (t,
J = 7.10, 3H); 13C NMR (125 MHz, CDCl3)
d 13.5, 19.3, 31.5,
37.1, 161.2.
4. Conclusion
(1) N-Phenylformamide: m.p. 46–48 8C, literature [28] 46–47 8C;
In conclusion, we have developed a simple, environmental and
efficient FSG-Hf(NPf2)4 catalyzed method for the N-formylation of
primary and secondary amines. This protocol can be used to
generate a diverse range of primary and secondary formamides in
good yields. The catalyst is completely recoverable and the
efficiency of the catalyst remains unaltered even after three cycles.
1H NMR (500 MHz, DMSO-d6)
d
8.71 (d, J = 11.0 Hz, 1H), 8.45
(d, J = 11.0 Hz, 1H), 7.10–7.59 (m, 5H); 13C NMR (125 MHz,
CDCl3) 119.2, 120.7, 125.3, 125.7, 129.5, 130.2, 137.4, 137.6,
d
160.5, 163.8.
(2) N-(4-Methylphenyl)formamide: m.p. 51–55 8C, literature [28]
50–54 8C; 1H NMR (500 MHz, DMSO-d6)
d 8.60 (d, J = 8.0 Hz,
References
1H), 8.31 (d, J = 8.0 Hz, 1H), 7.13 (d, J = 8.3 Hz, 2H), 6.98 (d,
J = 8.3 Hz, 2H), 2.31 (s, 3H); 13C NMR (125 MHz, CDCl3)
d 21.2,
21.3, 119.5, 120.6, 130.0, 130.6, 134.8, 135.5, 163.7.
[1] K. Ishihara, in: D.G. Hall (Ed.), Boronic Acids, Wiley-VCH, Weinheim, 2005, pp.
377–409.
(3) N-(2-Methylphenyl)formamide: m.p. 57–61 8C, literature [37]
59–60 8C; 1H NMR (500 MHz, DMSO-d6)
8.74 (d, J = 11.3,
1H), 8.17 (s, 1H), 7.67–7.03 (m, 4H), 2.31 (m, 3H); 13C NMR
(125 MHz, CDCl3) 17.8, 18.1, 121.3, 123.6, 125.8, 126.3,
[2] K. Ishihara, S. Ohara, H. Yamamoto, J. Org. Chem. 61 (1996) 4196–4197.
[3] K. Ishihara, S. Ohara, H. Yamamoto, Macromolecules 33 (2000) 3511–3513.
[4] K. Ishihara, S. Kondo, H. Yamamoto, Synlett (2001) 1371–1374.
[5] K. Ishihara, S. Ohara, H. Yamamoto, Org. Synth. 79 (2002) 176–185.
[6] T. Maki, K. Ishihara, H. Yamamoto, Synlett (2004) 1355–1358.
[7] T. Maki, K. Ishihara, H. Yamamoto, Org. Lett. 7 (2005) 5043–5046.
[8] T. Maki, K. Ishihara, H. Yamamoto, Org. Lett. 7 (2005) 5047–5050.
[9] T. Maki, K. Ishihara, H. Yamamoto, Org. Lett. 8 (2006) 1431–1434.
[10] T. Maki, K. Ishihara, H. Yamamoto, Tetrahedron 63 (2007) 8645–8657.
[11] B.C. Chen, M.S. Bednarz, R. Zhao, J.E. Sundeen, P. Chen, Z. Shen, A.P. Skoumbourdis,
J.C. Barrish, Tetrahedron Lett. 41 (2000) 5453–5456.
d
d
126.8, 127.3, 129.9, 130.5, 130.8, 131.5, 135.0, 135.5, 160.1,
164.4.
(4) N-(4-Methoxyphenyl)formamide: m.p. 78–80 8C, literature
[28] 78–80 8C; 1H NMR (500 MHz, DMSO-d6)
d 7.47 (d,
J = 8.9 Hz, 1H), 7.06 (d, J = 8.9 Hz, 1H), 6.79 (d, J = 8.6 Hz, 2H),
6.69 (d, J = 8.6 Hz 2H), 3.79 (s, 3H); 13C NMR (125 MHz, CDCl3)
[12] K. Kobayashi, S. Nagato, M. Kawakita, O. Morikawa, H. Konishi, Chem. Lett. 24
(1995) 575–576.
[13] B.B. Lohary, S. Baskaran, B.S. Rao, B.Y. Reddy, I.N. Rao, Tetrahedron Lett. 40 (1999)
4855–4856.
[14] G. Petit, M. Kalnins, T. Liu, E. Thomas, K. Parent, J. Org. Chem. 26 (1961) 2563–
2566.
d
56.0, 114.6, 122.2, 140.4, 153.3, 159.3, 163.4.
(5) N-(4-Hydroxyphenyl)formamide: m.p. 135–137 8C, literature
[38] 137.5–139 8C; 1H NMR (500 MHz, DMSO-d6)
d
10.05 (brs,
[15] I.M. Downie, M.J. Earle, H. Heaney, K.F. Shuhaibar, Tetrahedron 49 (1993) 4015–
4034.
[16] S. Kobayashi, K. Nishio, J. Org. Chem. 59 (1994) 6620–6628.
[17] S. Kobayashi, M. Yasuda, I. Hachiya, Chem. Lett. (1996) 407–408.
[18] Y. Han, L. Cai, Tetrahedron Lett. 38 (1997) 5423–5426.
[19] F. Effenberger, J. Eichhorn, Tetrahedron: Asymmetry 8 (1997) 469–476.
[20] J. Martinez, J. Laur, Synthesis (1982) 979–981.
Table 4
Reusability of FSG-Hf(NPf2)4 in the model reaction.a
Entry
Runb
Yield (%)c
[21] G. Brahmachari, S. Laskar, Tetrahedron Lett. 51 (2010) 2319–2322.
[22] A. Chandra Shekhar, A. Ravi Kumar, G. Sathaiah, V. Luke Paul, M. Sridhar, P.
Shanthan Rao, Tetrahedron Lett. 50 (2009) 7099–7101.
[23] B. Krishnakumar, M. Swaminathan, J. Mol. Catal. A: Chem. 334 (2011) 98–102.
[24] M.R. Mvthukur Bhojegowd, A. Nizam, M.A. Pasha, Chin. J. Catal. 31 (2010) 518–520.
[25] J.G. Kim, D.O. Jang, Synlett (2010) 1231–1234.
1
2
3
1
2
3
83
82
80
a
Reaction conditions: aniline 1 mmol, formic acid 3 mmol, 70 8C, 1 h.
Loss of catalyst (<5%) during handling.
Isolated yield.
b
c
[26] J.G. Kim, D.O. Jang, Synlett (2010) 2093–2096.